I think the key here is to be exquisitely careful at all times, and
any time we make any move, keep our units with it.
We're given two angular speeds, and we need to solve for a time.
Outer (slower) planet:
Angular speed = ω rad/sec
Time per unit angle = (1/ω) sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/ω sec/rad) · (2π rad) = 2π/ω seconds .
Inner (faster) planet:
Angular speed = 2ω rad/sec
Time per unit angle = (1/2ω) sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/2ω sec/rad) · (2π rad) = 2π/2ω sec = π/ω seconds.
So far so good. We have the outer planet taking 2π/ω seconds for one
complete revolution, and the inner planet doing it in only π/ω seconds ...
half the time for double the angular speed. Perfect !
At this point, I know what I'm thinking, but it's hard to explain.
I'm pretty sure that the planets are in line on the same side whenever the
total elapsed time is something like a common multiple of their periods.
What I mean is:
They're in line, SOMEwhere on the circles, when
(a fraction of one orbit) = (the same fraction of the other orbit)
AND
the total elapsed time is a common multiple of their periods.
Wait ! Ignore all of that. I'm doing a good job of confusing myself, and
probably you too. It may be simpler than that. (I hope so.) Throw away
those last few paragraphs.
The planets are in line again as soon as the faster one has 'lapped'
the slower one ... gone around one more time.
So, however many of the longer period have passed, ONE MORE
of the shorter period have passed. We're just looking for the Least
Common Multiple of the two periods.
K (2π/ω seconds) = (K+1) (π/ω seconds)
2Kπ/ω = Kπ/ω + π/ω
Subtract Kπ/ω : Kπ/ω = π/ω
Multiply by ω/π : K = 1
(Now I have a feeling that I have just finished re-inventing the wheel.)
And there we have it:
In the time it takes the slower planet to revolve once,
the faster planet revolves twice, and catches up with it.
It will be 2π/ω seconds before the planets line up again.
When they do, they are again in the same position as shown
in the drawing.
To describe it another way . . .
When Kanye has completed its first revolution ...
Bieber has made it halfway around.
Bieber is crawling the rest of the way to the starting point while ...
Kanye is doing another complete revolution.
Kanye laps Bieber just as they both reach the starting point ...
Bieber for the first time, Kanye for the second time.
You're welcome. The generous bounty of 5 points is very gracious,
and is appreciated. The warm cloudy water and green breadcrust
are also delicious.
Complete Question:
Each lunar cycle has one full moon, in which the relative positions of Earth, the sun, and the moon form in a straight line. Which list represents the position of Earth, the sun, and the moon during a full moon?
Group of answer choices.
A. Earth, sun, moon
B. sun, moon, Earth
C. moon, sun, Earth
D. sun, Earth, moon
Answer:
D. sun, Earth, moon
Explanation:
A lunar eclipse is a phenomenon that occurs when the Earth comes between the Moon and the Sun thereby causing it to cover the Moon with its shadow.
Simply stated, lunar eclipse takes place when the Moon passes or moves through the Earth's shadow thereby blocking any ray of sunlight from reaching the Moon. Thus, the full moon appears deep red (blood moon).
Also, a lunar eclipse would occur only when the Sun, Earth, and Moon are closely aligned to form a straight line known as the syzygy.
There are three (3) types of lunar eclipse and these are;
1. Total lunar eclipse.
2. Partial lunar eclipse.
3. Penumbra lunar eclipse.
Each lunar cycle has one full moon, in which the relative positions of Earth, the sun, and the moon form in a straight line. Thus, the list which represents the position of Earth, the sun, and the moon during a full moon is sun, Earth, and moon
The 48 and 47 are different atomic masses, this is caused by having a different number of neutrons.