Because their is nothing at the geographical poles that attracts the magnet
Answer:
Explanation:
Given that,
A point charge is placed between two charges
Q1 = 4 μC
Q2 = -1 μC
Distance between the two charges is 1m
We want to find the point when the electric field will be zero.
Electric field can be calculated using
E = kQ/r²
Let the point charge be at a distance x from the first charge Q1, then, it will be at 1 -x from the second charge.
Then, the magnitude of the electric at point x is zero.
E = kQ1 / r² + kQ2 / r²
0 = kQ1 / x² - kQ2 / (1-x)²
kQ1 / x² = kQ2 / (1-x)²
Divide through by k
Q1 / x² = Q2 / (1-x)²
4μ / x² = 1μ / (1 - x)²
Divide through by μ
4 / x² = 1 / (1-x)²
Cross multiply
4(1-x)² = x²
4(1-2x+x²) = x²
4 - 8x + 4x² = x²
4x² - 8x + 4 - x² = 0
3x² - 8x + 4 = 0
Check attachment for solution of quadratic equation
We found that,
x = 2m or x = ⅔m
So, the electric field will be zero if placed ⅔m from point charge A, OR ⅓m from point charge B.
Answer:
Tension, T = 1736 N
Explanation:
It is given that,
Mass of bricks, m = 175 kg
A rope is attached to a load of 175 kg bricks lifts the bricks with a steady acceleration of 0.12 m/s² in vertically upwards direction. let T is the tension in the rope. Using second equation of motion as :
T - mg = ma
T = ma + mg
T = m(a + g)
T = 175 kg ( 0.12 m/s² + 9.8 m/s² )
T = 1736 N
Hence, the tension in the wire is 1736 N.
Answer:
Eleven seconds.
Explanation:
Two keys are needed to solve this problem. First, the conservation of momentum: allowing you to calculate the cart's speed after the elephant jumped onto it. It holds that:

So, once loaded with an elephant, the cart was moving with a speed of 4.29m/s.
The second key is the kinematic equation for accelerated motion. There is one force acting on the cart, namely friction. The friction acts in the opposite direction to the horizontal direction of the velocity v0, its magnitude and the corresponding deceleration are:

The kinematic equation describing the decelerated motion is:

It takes 11 seconds for the comical elephant-cart system to come to a halt.