Answer:
The system's potential energy is -147 J.
Explanation:
Given that,
Energy = 147 J
We know that,
System is isolated and it is free from external forces.
So, the work done by the external forces on the system should be equal to zero.

We need to calculate the system's potential energy
Using thermodynamics first equation

Put the value into the formula


Hence, The system's potential energy is -147 J.
The sound gets louder as it gets closer and when it passes is gets softer
Its C because if it is a low frequency it will not change much so it will be a longer wavelength and the higher the frequency the shorter the wavelength
Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease
The equation of motion of a pendulum is:

where
it its length and
is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for <em>small</em> angles (
), we can use:

Additionally, let us define:

We can now write:

The solution to this differential equation is:

where
and
are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

This justifies that the period depends only on the pendulum's length.