We know, F = m * a
Here, m = 140 g = 0.140 Kg
a = 25 m/s2
It would be: F = 0.140 * 25 = 3.5 N
So your answer would be 3.5N
Answer:
The increase in the gravitational potential energy is 29.93 joules.
Explanation:
Given that,
Mass of the box, m = 2.35 kg
It is lifted from the floor to a tabletop 1.30 m above the floor, h = 1.3 m
We need to find the increase the gravitational potential energy. Initial it will placed at ground i.e. its initial gravitational potential is equal to 0. The increase in the gravitational potential energy is given by :


U = 29.93 Joules
So, the increase in the gravitational potential energy is 29.93 joules. Hence, this is the required solution.
12.) Active transport because the cell must use energy to move large particles across the membrane.
13.) Photosynthesis takes place in plant leaves containing the chlorophyll pigment. Cellular respiration takes place in the cytoplasm and mitochondria of the cell. ... Cellular respiration uses glucose molecules and oxygen to produce ATP molecules and carbon dioxide as the by-product.
14.) In cells with a nucleus, as in eukaryotes, the cell cycle is also divided into two main stages: interphase and the mitotic (M) phase (including mitosis and cytokinesis). During interphase, the cell grows, accumulating nutrients needed for mitosis, and undergoes DNA replication preparing it for cell division.
Answer:
Speed of gamma rays = 3 x 10⁸ m/s
Explanation:
Given:
Frequency of gamma ray = 3 x 10¹⁹ Hz
Wavelength of gamma rays = 1 x 10⁻¹¹ meter
Find:
Speed of gamma rays
Computation:
Velocity = Frequency x wavelength
Speed of gamma rays = Frequency of gamma ray x Wavelength of gamma rays
Speed of gamma rays = [3 x 10¹⁹][1 x 10⁻¹¹]
Speed of gamma rays = 3 x [10¹⁹⁻¹¹]
Speed of gamma rays = 3 x [10⁸]
Speed of gamma rays = 3 x 10⁸ m/s
If its asking the distance for the 65 db then use a proportion, if otherwise pleas clarify. It sounds like a pretty juicy conversation.