A) -0.5(9.8)*t^2 = -25(t-2) - 0.5(9.8)(t-2)^2
-4.9t^2 = -25t + 50 - 4.9(t^2-4t+4)
0 = -25t+50+19.6t - 19.6
5.4t = 30.4
t = 5.62962963 s
b) h = -4.9(5.62962963)^2
h = -155.2943759
the building is 155.2943759 m high
c) speed 0of first stone
= at
= 9.8*5.62962963
= 55.17037037 m/s
speed of second stone
= v + at
= 25+9.8*3.62962963
= 60.57037037 m/s
Explanation:
(a) potassium oxide with water

According to reaction,1 mole of potassium oxide reacts with 1 mole of water to give 1 mole of potassium hydroxide.
(b) diphosphorus trioxide with water

According to reaction,1 mole of diphosphorus trioxide reacts with 2 moles of water to give 2 moles of phosphorus acid.
(c) chromium(III) oxide with dilute hydrochloric acid,

According to reaction,1 mole of chromium(III) oxide reacts with 6 moles of hydrochloric acid to give 2 moles of chromium(III) chloride and 3 moles of water.
(d) selenium dioxide with aqueous potassium hydroxide

According to reaction,1 mole of selenium dioxide reacts with 2 moles of potassium hydroxide to give 1 mole of potassium selenite and 1 mole of water.
Answer:

Explanation:
Group 4A contains a total of 4 electrons for each atom in their valence shell. Filling the orbital diagram, let's say, for carbon, notice that when we start with period 2, we have two elements in the s-block, that is, lithium and beryllium. They correspond to the two s electrons that belong to the valence shell of carbon.
Moving on, we have boron and carbon, the remaining 2 electrons. Now, starting with boron, we're in the p-block.
That said, looking at the second period, the electron configuration for the valence shell of a group 4A element would be:

The elements in each group have the same number of electrons in the outer orbital. Or also called valence electrons. Khan academy has a great video online explaining why this happens. (It only happens for main group elements). Here is a link (sorry you can’t click it in Brainly) https://www.khanacademy.org/science/chemistry/periodic-table/copy-of-periodic-table-of-elements/v/periodic-table-valence-electrons. Feel free to message me for a better explanation, I would explain now but I’m not sure how much you know about this. If you know how to write an electron configuration you can see how all the electron configurations for the same group (not the transitional metals only the main groups) have the same number of valence electrons. I hope that helped, sorry I was vague about the explanation :)