Let's say say there are n1 mols of helium in the first balloon and n2 mols of nitrogen in the second one, which are equivalent to m1 grams of helium and m2 grams of nitrogen.
The molar mass of hydrogen is thus M1=m1/n1, same for nitrogen M2=m2/n2 hence the ratio of their masses is m1/m2=(M1n1)/(M2n2). Since both gases are rather similar, we can assume that n1~n2 hence m1/m2=M1/M2
Answer: The given statement is true.
Explanation:
When we increase the amount of solvent which is water in this case then it means there will occur an increase in the molecules. Hence, there will be more number of collisions to take place with increase in number of molecules.
Therefore, more is the amount of interaction taking place between the molecules of a solution more will be its rate of hydrolysis.
Thus, we can conclude that the statement increasing the amount of water in which the sugar is dissolved will increase the frequency of collisions between the sucrose molecules and the water molecules resulting in an increase in the rate of hydrolysis, is true.
After 3 years, the substance will go through 4 half lives. You can do 230*(1/2)^4, which is 14.375.
Answer:
<h3>The answer is option B</h3>
Explanation:
To calculate the number of atoms we must first calculate the number of moles
Molar mass = mass / number of moles
number of moles = mass / Molar mass
Molar mass (K) = 39.10mole
mass = 2.10g
number of moles = 2.10/ 39.10
= 0.0537mol
After that we use the formula
N = n × L
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10^23 entities
Number of K atoms is
N = 0.0537 × 6.02 × 10^13
<h3>N = 3.23×10^22 atoms of K</h3>
Hope this helps you.
Answer is: <span>the pressure of the gas is 9,2 atm.
</span>p₁ = 4,0 atm.
T₁ = 300 K.
V₁ = 5,5 L.
p₂ = ?
T₂ = 250 K.
V₂ = 2,0 L.
Use combined gas law - the volume of amount of gas is proportional to the ratio of its Kelvin temperature and its pressure.<span>
</span>p₁V₁/T₁ = p₂V₂/T₂.
4 atm · 5,5 L ÷ 300 K = p₂ · 2,0 L ÷ 250 K.
0,0733 = 0,008p₂.
p₂ = 9,2 atm.