Answer:
OPTION D (The waves will sometimes get very high and very low) is the answer.
Explanation:
Wavelength = velocity ÷ frequency
As the frequency which measures the number of waves per unit of time is inversely proportional to the wavelength, point X which lies between two sources, and one source is shorter than another, the wave heights at point x will vary as the distances from point X vary too. This means that waves at point X depending on the wave type and source will get very high at times and very low.
D) Partial charge cannot be removed, because charge is a discrete quantity that may exist only at certain values
Explanation:
The electric charge of an object is a property of the object that is related to the ability of the object to experience/exert an electric force: if the object is electrically charge, then it is attracted or repelled by other electrically charged object.
The electric charge of an object depends on the amount of charged particles it has on it. In particular, the fundamental particles that carry electric charge are:
- Protons: they carry electric charge of +e
- Electrons: they carry electric charge of -e
Where "e" is the fundamental charge (
). Therefore, one proton carry a charge of +e and one electron carry a charge of -e.
An electron is a fundamental particle: this means that it cannot be divided into smaller particles. This also means that it is not possible to remove part of the charge of the electron: in fact, it is said that electric charge exists only as discrete values, being a multiple of
. Therefore, the correct statement is
D) Partial charge cannot be removed, because charge is a discrete quantity that may exist only at certain values
Learn more about particles:
brainly.com/question/2757829
#LearnwithBrainly
Answer:

Explanation:
As we know by radioactivity law

so here we will have


now we will have


now we also know that



Answer: c. 1.3 m/s^2
Explanation:
When he is at rest, is weight can be calculated as:
W = g*m
where:
m = mass of the man
g = gravitational acceleration = 9.8m/s^2
We know that at rest his weight is W = 824N, then we have:
824N = m*9.8m/s^2
824N/(9.8m/s^2) = m = 84.1 kg
Now, when the elevators moves up with an acceleration a, the acceleration that the man inside fells down is g + a.
Then the new weight is calculated as:
W = m*(g + a)
and we know that in this case:
W = 932N
g = 9.8m/s^2
m = 84.1 kg
Then we can find the value of a if we solve:
932N = 84.1kg*(9.8m/s^2 + a)
932N/84.1kg = 11.1 m/s^2 = 9.8m/s^2 + a
11.1 m/s^2 - 9.8m/s^2 = a = 1.3 m/s^2
The correct option is C