Answer:
Energy= 46.08KJ
Explanation:
Given that the power needed to light each bulb is 32W
We know that Power = 
The energy needed to light one bulb=
Given time = 1minute = 60 seconds
Energy =
=1920J
Therefore energy needed to light one bulb is 1920J
The energy needed to light 24 bulbs =
=46080J=46.08KJ
True if you look up the question Is velocity speed in a certain direction you would’ve gotten the answer but I’m pretty sure it’s true
To verify the identity, we can make use of the basic trigonometric identities:
cot θ = cos θ / sin θ
sec θ = 1 / cos <span>θ
csc </span>θ = 1 / sin θ<span>
Using these identities:
</span>cot θ ∙ sec θ = (cos θ / sin θ ) (<span> 1 / cos </span><span>θ)
</span>
We can cancel out cos <span>θ, leaving us with
</span>cot θ ∙ sec θ = 1 / sin θ
cot θ ∙ sec θ = = csc <span>θ</span>
Answer:
Yes option A is right.
Explanation:
As we know that the "Opposite charges attract and like charges repel eachother". So based upon that fact we find out the sphere will be repelled or attract by the rod. As in this case metallic sphere was neutral initially but then we touched the rod with it. Although it was for few seconds but the charge is transferred to the sphere. Now both sphere and the rod have charge. After the seperation we look towards their respond If both have the opposite charge they will attract eachother. But here in this case they repel because they have the same charge, as we have charged the neutral sphere with the rod so we already know that they have the same charges that is why they are repelling eachother.
Insulation from the ground means that blocking the way of charges or free electrons from earth to metallic sphere and vice versa. As there exists free electrons and charges in earth they would flow into the metallic objects. So for more precise and accurate experiments we insulate the metals or prevent the metals from touching the earth surface to avoid the flow of charges through them. I hope it will help you.
Answer:
1) q₁ = 12.987 cm
, b) L = 17.987 cm
, c) m = 179.87
Explanation:
We can solve the geometric optics exercises with the equation of the constructor
1 / f = 1 / p + 1 / q
where f is the focal length, p and q are the distance to the object and the image respectively.
Let's apply this equation to our case
1) f = 5mm = 0.5 cm
p₁ = 5.2 mm = 0.52 cm
h = 0.1 mm = 0.01 cm
1 / q₁ = 1 / f- 1 / p
1 / q₁ = 1 / 0.5 - 1 / 0.52 = 2 - 1.923
1 / q₁ = 0.077
q₁ = 12.987 cm
2) in this part they tell us that the eyepiece creates an image at infinity, therefore the object that comes from being at the focal length of the eyepiece
p₂ = 5 cm
The absolute thing that goes through the two lenses is
L = q₁ + p₂
L = 12.987 +5
L = 17.987 cm
3) This lens configuration forms the so-called microscope, whose expression for the magnifications
m = -L / f_target 25 cm / f_ocular
m = - 17.987 / 0.5 25 / 5.0
m = 179.87