Answer:
(a) 
(b) 
(c) 
(d) 
Solution:
As per the question:
Angular velocity, 
Time taken by the wheel to stop, t = 2.4 h = 
Distance from the axis, R = 38 cm = 0.38 m
Now,
(a) To calculate the constant angular velocity, suing Kinematic eqn for rotational motion:

= final angular velocity
= initial angular velocity
= angular acceleration
Now,


Now,
(b) The no. of revolutions is given by:



(c) Tangential component does not depend on instantaneous angular velocity but depends on radius and angular acceleration:

(d) The radial acceleration is given by:

Linear acceleration is given by:


Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
Answer:
E
Explanation:
F seems more like a corona
47W/
is the intensity of the light that emerges from the filter
Use Malus's law, the intensity of the light is,
I=
, cos² ∅
The intensity of the beam from the first polarizer is equal to the half of
the initial intensity.
=
/2
Substitute the numerical values we get
94 W/m² 2
= 47 W/m²
What is intensity ?
In physics, the power transferred per unit area is known as the intensity or flux of radiant energy, where the area is measured on a plane perpendicular to the direction of the energy's propagation. Watts per square meter (W/m2) and kilograms per square meter (kg/s3) are the units used in the SI system. With waves like acoustic waves (sound) or electromagnetic waves like light or radio waves, intensity is most usually employed to describe the average power transfer across one period of the wave. Other situations where energy is exchanged can also be described in terms of intensity. One could, for instance, figure out how much kinetic energy each drop of water from a sprinkler is carrying.
To learn more about intensity visit:
brainly.com/question/25556938
#SPJ4