Answer:
Electrons
Explanation:
Ionised atoms loose and gain electrons.
hope it helps!
Explanation:
Use the height of the cliff to determine how long it took the car to land.
Take down to be positive. Given:
Δy = 7.93 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
7.93 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.27 s
Use the time to calculate the horizontal velocity.
Given:
Δx = 26.7 m
a = 0 m/s²
Find: v₀
Δx = v₀ t + ½ at²
26.7 m = v₀ (1.27 s) + ½ (0 m/s²) (1.27 s)²
v₀ = 21.0 m/s
The driver was going 21.0 m/s, faster than the speed limit of 9.72 m/s.
Answer:
The acceleration of the crate is
.
Explanation:
Given that,
Force, F = 750 N
Mass of the crate, m = 250 kg
The coefficient of friction is 0.12.
We need to find the acceleration of the crate. The net force acting on the crate is given by :

f is frictional force, 

So, the acceleration of the crate is
. Hence, this is the required solution.
Answer:
The height will be 917431.2 m.
Explanation:
Power of bulb = 75 W
Time kept on 1 hr = 60 x 60 = 3600 sec
Energy of bulb = power x time
E = 75 x 3600 = 270000 J
From conservation of energy, kinetic energy of the bulb is equal to the potential energy of the bulb due to its height of fall.
Potential energy = m x g x h
Where g = acceleration due to gravity 9.81 m/s2
m = mass = 30 g = 0.03 kg
PE = 0.03 x 9.81 x h = 0.2943h
Equating withe the energy of bulb (still obeying energy conservation)
270000 = 0.2943h
h = 270000/0.2943 = 917431.2 m