Answer:
D. Graphing the force as a function of distance and calculating the area under the curve.
Explanation:
Answer:
F = - 1,598 10⁻³ N
Explanation:
Electic strength is given by Coulomb's law
F = k q₁ q₂ / r²
Where k is the Coulomb constant that is worth 8.99 10⁸ N m²/C², q₁ and q₂ are the charges and r is the distance that separates the electric charges
In this case the charge of the two spheres is the same and of a different sign since when you remove the charge of a sphere that was initially neutral, it is left with that charge removed but of the opposite sign
q₁ = q₂ = 2.50 10¹³ electrons = 2.50 10¹³ 1.6 10⁻¹⁹
q₀ = 4.0 10⁻⁶ C
Let's calculate
F = - 8.99 10⁸ (4.0 10⁻⁶)² / 0.30²
F = - 1,598 10⁻³ N
According to Doppler Effect, an observer at rest will perceive a shift in the wavelength or frequency of the radiation emitted by a source in movement.This shift is given by the formula:

where:

= observed wavelength

= wavelength at rest
v = speed of source (positive if towards the observer, negative if away from the observer)
c = speed of light
Therefore, we can solve for the observed wavelength:

Substituting the given data:

= 655.80 nm
Hence, the observed wavelength of the line would be
655.80 nm. Note that this value is smaller than the one at rest, which means that we have a blue-shift, as expected for an approaching source.
We use kinematic equation,

Here, h is vertical height, u is initial vertical velocity, t is time taken and g is acceleration due to gravity.
As diver dives out horizontally, his velocity is directed horizontally; that is, the initial vertical velocity is 0. So above equation becomes

Given, t =3 s.
Therefore,
.
Now the horizontal distance of the diver to hit the water from base,

If you use the equation F=ma and re-arrange it to get m = F/a, you'll get the total mass. Then you have to subtract the mass of the cart from the total mass to get the mass of the rock.
Thus, m = 6N over 2m/s^2. The total mass will then be 3kg. Subtracting 1kg from the total mass will then yield you 2kg, which is the mass of the rock. Hope this helps.