Explanation:
Given:




Let
= mass of the asteroid and
= orbital radius of the asteroid around the sun. The centripetal force
is equal to the gravitational force 

or

where

with T = period of orbit. Rearranging the variables, we get

Taking the square root,



Answer:
The correct answer is option'B': Change in entropy
Explanation:
We know from the second law of thermodynamics for any spontaneous process the total entropy of the system and it's surroundings will increase.
Meaning that any unaided process will move in a direction in which the entropy of the system will increase.It is because the system will always want to increase it's randomness
Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity
will be expressed by the following equation:

Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
D.
All follow an elliptical path that has two foci, rather than a circular path.
Kepler found paths are elliptical, not circular
A contact force is a type of force which act on an object by coming in contact with the object. Examples of contact force that acts through a force field are: applied force, frictional force, air resistance force, tension, spring force, etc.
Examples of forces that act through a force field are gravitational force, electromagnetic force, the weak interaction and the strong interaction.