Answer:
R/l = 0.25925 Ω / m
Explanation:
Ohm's law says that the potential difference is proportional to the product of the resistance by the current
V = I R
R = V / I
In this case, since we have two lengths, we can have two lengths, we can find the resistance for each
L = 5 m
R = 7.70 / 5.47
R = 1,408 Ω
L = 10 m
R = 7.70 / 3.25
R = 2,369 Ω
We can make a direct proportions rule (rule of three) to find the resistance per unit length
For L = 5 m
R/l = 1,408 / 5
R/l = 0.2816 Ω / m
For L = 10 m
R/l = 2,369/10
R/l = 0.2369 Ω / m
We can see that the value is similar that differs from the second decimal place, in this case the value for the longer re wire is more accurate because it has a lower joule effect.
One way also to find the average value
R/l = (0.2816 + 0.2369) / 2
R/l = 0.25925 Ω / m
Answer:
1%
Explanation: A cassegrain telescope is a kind of telescope which is made up of the curved mirrors one of the mirrors is a concave mirror is called the primary mirror and the second mirror called the secondary mirror which is a convex mirror, when light Penetrate the cassegrain telescope, it first hits the primary concave mirror and it's then reflected by the secondary convex mirror.
The wave interaction that is shown in the photo is refraction as light moves from air to water.
<h3>What is refraction?</h3>
Refraction refers to the change in the frequency of a wave and the direction of the wave as it moves from one medium to another. We know that waves makes a body under water to look slightly different than when it is in air.
Thus, the wave interaction that is shown in the photo is refraction as light moves from air to water.
Learn more about refraction:brainly.com/question/14760207
#SPJ1
Answer:
Speed = 2.4 m/s
Explanation:
As given in question,
Frequency of the wave = 4 Hz
The wavelength of the wave = 60 cm
As we know,
1 cm = 0.01 m
=>60 cm = 0.6 m
So, the wavelength of the wave = 0.6 m
speed of wave = wavelength x frequency
= 0.6 m x 4 Hz
= 2.4 m/s
Hence, the velocity of wave vibrating with 4 Hz frequency and wavelength of 60 cm is 2.4 m/s.
Answer:
vi = 3.95 m/s
Explanation:
We can apply the Work-Energy Theorem as follows:
W = ΔE = Ef - Ei
W = - Ff*d
then
Ef - Ei = - Ff*d <em> </em>
If
Ei = Ki + Ui = 0.5*m*vi² + m*g*hi = 0.5*m*vi² + m*g*hi = m*(0.5*vi² + g*hi)
hi = d*Sin 20º = 5.1 m * Sin 20º = 1.7443 m
Ef = Kf + Uf = 0 + 0 = 0
As we know, vf = 0 ⇒ Kf = 0
Uf = 0 since hf = 0
we get
W = ΔE = Ef - Ei = 0 - m*(0.5*vi² + g*hi) ⇒ W = - m*(0.5*vi² + g*hi) <em> (I)</em>
<em />
If
W = - Ff*d = - μ*N*d = - μ*(m*g*Cos 20º)*d = - μ*m*g*Cos 20º*d <em>(II)</em>
<em />
we can say that
<em />
- m*(0.5*vi² + g*hi) = - μ*m*g*Cos 20º*d
⇒ vi = √(2*g*(μ*Cos 20º*d - hi))
⇒ vi = √(2*(9.81 m/s2)*(0.53*Cos 20º*5.1m - 1.7443 m)) = 3.95 m/s
<em />