Answer:
200 km/hr
Explanation:
Since he goes 80km per hour, multiply this by 2.5 or two and a half hours.
80 x 2.5 = 200 km/hr.
Answer:
if there is no friction in a simple machine, work output and work input are found equal in that machine
Explanation:
Answer:
The ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
Explanation:
The resistance of the coil is directly proportional to the length of the coil and inversely proportional to the area of coil and hence inversely proportional to the square of radius of the coil.
So, the ratio of the resistances of second coil to the first coil is the ratio of square of radius of the first coil to the square of radius of second coil.
And
The ratio of the resistances of fourth coil to the third coil is the ratio of square of radius of the third coil to the square of radius of fourth coil.
Answer:
Explanation:
Given
mass of Flywheel 
mass of bus 
radius of Flywheel 
final speed of bus 
Conserving Energy i.e.
0.9(Rotational Energy of Flywheel)= change in Kinetic Energy of bus
Let
be the angular velocity of Flywheel





Answer:
See the answers below
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
<u>First case</u>
Vf = 6 [m/s]
Vo = 2 [m/s]
t = 2 [s]
![6=2+a*2\\4=2*a\\a=2[m/s^{2} ]](https://tex.z-dn.net/?f=6%3D2%2Ba%2A2%5C%5C4%3D2%2Aa%5C%5Ca%3D2%5Bm%2Fs%5E%7B2%7D%20%5D)
<u>Second case</u>
Vf = 25 [m/s]
Vo = 5 [m/s]
a = 2 [m/s²]
![25=5+2*t\\t = 10 [s]](https://tex.z-dn.net/?f=25%3D5%2B2%2At%5C%5Ct%20%3D%2010%20%5Bs%5D)
<u>Third case</u>
Vo =4 [m/s]
a = 10 [m/s²]
t = 2 [s]
![v_{f}=4+10*2\\v_{f}=24 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D4%2B10%2A2%5C%5Cv_%7Bf%7D%3D24%20%5Bm%2Fs%5D)
<u>Fourth Case</u>
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
![v_{f}=5+8*10\\v_{f}=85 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D5%2B8%2A10%5C%5Cv_%7Bf%7D%3D85%20%5Bm%2Fs%5D)
<u>Fifth case</u>
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
