1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina18 [472]
3 years ago
6

An 80-kg astronaut becomes separated from his spaceship. He is 15.0 m away from it and at rest relative to it. In an effort to g

et back, he throws a 500 gram object with a speed of 8.0 m/s in a direction away from the ship. How long does it take him to get back to the ship?
Physics
1 answer:
Allushta [10]3 years ago
3 0

Answer: 300 s

Explanation:

The momentum p is given by the following equation:

p=m.V

Where m is the mass of the object  and V is the velocity.

In addition, according to the conservation of linear momentum, we have:

p_{1}=p_{2} (1)

Where:

p_{1}=0 is the initial momentum of the astronaut, which is initially at rest

p_{2}=m_{object}V_{object}+m_{astronaut}V_{astronaut} is the final momentum, being m_{object}=500g=0.5 kg, V_{object}=8 m/s and  m_{astronaut}=80 kg

Then (1) is rewritten as:

0=m_{object}V_{object}+m_{astronaut}V_{astronaut} (2)

Finding te velocity of the astronaut V_{astronaut}:

V_{astronaut}=-\frac{m_{object}V_{object}}{m_{astronaut}} (3)

V_{astronaut}=-\frac{(0.5 kg)(8 m/s)}{80 kg} (4)

V_{astronaut}=-0.05 m/s (5) The negative sign of the velocity indicates it is directed towards the spaceship, however its speed (the magnitude of the velocity vector) is positive 0.05 m/s

On the other hand we have the following:

V_{astronaut}=\frac{d}{t} (6)

Where d=15 m the distance between the astronaut and the spacheship and t the time. So, we have to find t:

t=\frac{d}{V_{astronaut}} (7)

t=\frac{15 m}{0.05 m/s}

Finally:

t=300 s

You might be interested in
At the bottom of a large cylindrical tank filled with fresh water the gauge pressure is 11.6 psi. What is the height (in feet) o
Art [367]

Answer:

8.19m

Explanation:

Parameters given:

Pressure, P= 11.6 psi = 79979.185 Pa

Gauge pressure is given as:

P = h*d*g

=> h = P/(d*g)

Where

h = height of tank

d = density

g = acceleration due to gravity

Density of water = 997 kg/m³

Therefore, the height of the tank is:

h = 79979.185/(997 * 9.8)

h = 8.19m

3 0
3 years ago
What is the mass of 2000 ml of an intravenous glucose solution with a density of 1.15 g/ml?
Scorpion4ik [409]

According to the following formula, the answer is 2,300 g or 2.3 kg:

Volume (m)/Mass (m) Equals Density (p) (V)

Here, the density is 1.15 g/mL, allowing the formula described above to result in a mass of 2.00 L:

p=m/V

1.15 g/mL is equal to x g/2.00 L or x g/2,000 mL.

2,000 mL of x g = 1.15 g of g/mL

2.3 kg or 2,300 g for x g.

<h3>How many grams of glucose are in a 1000ml bag of glucose 5?</h3>

Its active ingredient is glucose. This medication includes 50 g of glucose per 1000 ml (equivalent to 55 g glucose monohydrate). 50 mg of glucose is present in 1 ml (equivalent to 55 mg glucose monohydrate). A transparent, nearly colourless solution of glucose in water is what is used in glucose intravenous infusion (BP) at 5% weight-to-volume.

Patients who are dehydrated or who have low blood sugar levels get glucose intravenously. Other medications may be diluted with glucose intravenous infusion before being injected into the body. Other diseases and disorders not covered above may also be treated with it.

learn more about  glucose intravenous infusion refer

brainly.com/question/7057736

#SPJ4

5 0
1 year ago
A ball is ejected to the right with an unknown horizontal velocity from the top of a pillar that is 50 meters in height. At the
dimulka [17.4K]

Answer:

15.67 m/s

Explanation:

The ball has a projectile motion, with a horizontal uniform motion with constant speed and a vertical accelerated motion with constant acceleration g=9.8 m/s^2 downward.

Let's consider the vertical motion only first: the vertical distance covered by the ball, which is S=50 m, is given by

S=\frac{1}{2}gt^2

where t is the time of the fall. Substituting S=50 m and re-arranging the equation, we can find t:

t=\sqrt{\frac{2S}{g}}=\sqrt{\frac{2(50 m)}{9.8 m/s^2}}=3.19 s

Now we now that the ball must cover a distance of 50 meters horizontally during this time, in order to fall inside the carriage; therefore, the velocity of the carriage should be:

v=\frac{d}{t}=\frac{50 m}{3.19 s}=15.67 m/s

8 0
3 years ago
Humans can typically perceive frequencies that range from 20 Hz–20 kHz. Dogs can hear sounds up to 45 kHz. Dog whistles produce
Aleksandr [31]
Pitch is directly related to the frequency of the sound. In this item, we are given that the frequency of the sound is higher compared to those which are audible to the human being's ears. The pitch therefore of the dog's whistle is high. 

On the other hand, the frequency and the wavelength of a certain wave are inversely proportional. This means that the high frequency wave will have a short wavelength. 

Hence, the answer to this item would have to be "high pitch with a short wavelength" 

The answer to this item is the second option. 
6 0
3 years ago
Read 2 more answers
Sound waves travel at the rate of 343 m/s at 20°C. If a man standing 450 meters away from the wall of a canyon yells, “Hello,” h
nekit [7.7K]

Answer:

2.62seconds

Explanation:

Speed is defined as the ratio of the distance covered by a body with respect to time.

Speed v = Distance (s)/Time (t)

For a traveling sound wave, the distance between the source of a sound and the reflector is '2S'.

Speed v = 2 × distance (S)/Time (T)

V = 2S/t

2S = vt

Given speed of the wave = 342m/s

Distance covered = 450m

t = 2S/v

t = (2×450)/343

t = 900/343

t = 2.62seconds

It will take him 2.62seconds for him to hear his own voice echo off of the wall.

5 0
3 years ago
Read 2 more answers
Other questions:
  • The air pressure inside the tube of a car tire is 430 kPa at a temperature of 13.0 °C. What is the pressure of the air, if the t
    5·1 answer
  • What is the intensity level of a sound with an intensity of 0.000127 W/m2?
    13·1 answer
  • We have to use either of these formulas
    15·1 answer
  • What are some advantages of using the graphical method of vector resolution?
    12·1 answer
  • Which statement is true of AC current?. Select one of the options below as your answer:. . A.. It uses a battery as a power sour
    7·2 answers
  • A piece of charcoal used for cooking is found at the remains of an ancient campsite. A 1.09 kg sample of carbon from the wood ha
    6·1 answer
  • A car of mass 1230 kg is on an icy driveway inclined at an angle of 39°. The acceleration of gravity is 9.8 m/s². θ If the incli
    5·1 answer
  • In 1949, an automobile manufacturing company introduced a sports car (the "Model A") which could accelerate from 0 to speed v in
    5·1 answer
  • What would result from under-coverage? A. a lack of accurate result B. an incorrect independent variable C. an experiment D. acc
    14·2 answers
  • Point charge 3.0 μC is located at x = 0, y = 0.30 m, point charge -3.0 μC is located at x = 0 y = -0.30 m. What are (a)the magni
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!