Answer:
11.025 m
87.75 m
Explanation:
Time of flight(T) of a projectile = 2U(sin∅)/g
Where U = initial Velocity, g = acceleration due to gravity, ∅= angle of projection.
Make ∅ the subject of the the equation,
∅ = sin⁻¹[(T× g)/2U]
Where U = 15m/s, T= 3.0 s, g = 9.8 m/s²
∅ = sin⁻¹[(3 × 9.8)/(2×15)]
∅ = sin⁻¹(29.4/30)
∅= sin⁻¹(0.98) = 78.52°
Using the formula for maximum height of a projectile
H = U²sin²∅/2g
H = 15²(sin²78.52)/2 × 9.8
H = 225(0.98 × 0.98)/19.6
H = 216.09/19.6
H = 11.025 m
Range (R) = U²sin2∅/g
R = 15²sin(2×79.52)/9.8
R = 225(0.39)
R =87.75 m
∵ the building is = 11.025 m tall and the base of the building is 87.75m away from where the stone landed.
First blank is radiator
Second blank is radiator
Answer:
a) The number density is 3.623 × 10⁻³ 
The mass of the atmosphere is 1.3 × 10²²Kg
b) The pressure is 10⁻²⁰ Millimeter of mercury
c) The mass mixing ratio is 0.0107
The partial pressure of ethane is 0.01114 Pa
Yes it is condensable because it boiling point is -88.5 C which is equivalent to 184.5 K i.e is adding 273 to -88.5C and the temperature of the atmosphere is 37 K.
Explanation:
The explanation is on the first and second uploaded image
It would be 3.15 in meters
Answer:
C) one-half as great
Explanation:
We can calculate the acceleration of gravity in that planet, using the following kinematic equation:

In this case, the sphere starts from rest, so
. Replacing the given values and solving for g':

The acceleration due to gravity near Earth's surface is
. So, the acceleration due to gravity near the surface of the planet is approximately one-half of the acceleration due to gravity near Earth's surface.