Answer:
Magnitude of the Frictional force = (mv₀²)/2x₁
Explanation:
For the frictional force to stop the box, it has to produce the deceleration of the box; thereby being the opposing force to the box's motion.
According to Newton's first law of motion
Frictional force = (mass of the box) × (deceleration experienced by the box)
Let the mass of the box be m
Then,
Frictional force = ma
Then we can obtain the deceleration using the equations of motion
v² = u² + 2ax
u = Initial velocity = v₀ m/s
v = Final velocity = 0 m/s (since the box comes to rest at the end)
x = horizontal distance covered = (x₁ - x₀) = x₁ (since x₀ = 0)
a = ?
v² = u² + 2ax
0 = (v₀)² + 2ax₁
2ax₁ = - v₀²
a = - (v₀²)/(2x₁) (minus sign, because it's a deceleration)
Magnitude of the Frictional force = ma = (mv₀²)/2x₁
Answer:
6.3 m/s
Explanation:
m = mass of the block = 1.10 kg
k = spring constant of the spring
x = stretch in the spring = 0.2 m
t = time taken by block to come to zero speed first time = 0.100 s
T = Time period of oscillation
Time period of oscillation is given as
T = 2t
T = 2 (0.1)
T = 0.2 s
Time period is also given as


k = 1084.6 N/m
v = maximum speed of the block
using conservation of energy
Maximum kinetic energy = Maximum spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(1.10) v² = (1084.6) (0.2)²
v = 6.3 m/s
Answer:
D) Vertically.
Explanation:
A free body diagram is used to represent all the forces acting in a body. forces like, the force of gravity as a result of the gravitational interaction between the object and the Earth (W), the frictional force opposite to the movement of the object (
), the normal force due to the plane and the object (N) and the force applied to start the movement in a particular direction (F).
As is show in the free body diagram of the system, W, which is the weight of the body as a consequence of the gravitational force, is at an angle
below the inclined plane. that angle between the plane and the x axis is the same that the one of the inclined plane with respect to the horizontal, Since its sides are perpendicular.
Notice how W goes always in the direction to the center of mass of Earth in a vertical path (For comparison see figure (a) and (b)).
Answer:
Coil 2 have 235 loops
Explanation:
Given
The number of loops in coil 1 is n
₁=
159
The emf induced in coil 1 is ε
₁
=
2.78
V
The emf induced in coil 2 is ε
₂
=
4.11
V
Let
n
₂ is the number of loops in coil 2.
Given, the emf in a single loop in two coils are same. That is,
ϕ
₁/n
₁=
ϕ
₂
n
₂⟹
2.78/159
=
4.11/
n
₂
n₂=
n₂=235
Therefore, the coil 2 has n
₂=
235 loops.