Answer:
Explanation:
Given the height reached by a balloon after t sec modeled by the equation
h=1/2t²+1/2t
a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t
If h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
b) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec
c) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec
Answer:
Average speed = distance/time
From 1 to 9 seconds:
Distance covered = 1 - 0.2 = 0.8 km
Time = 9 - 1 = 8 sec
Average speed = 0.8 km / 8 sec
Average speed = 0.1 km/s .
The average speed for the whole test is 1.6 km / 20 sec = 0.08 km/sec. A graph of speed vs time would average out as a horizontal line at 0.08 km/sec from 1 sec to 21 sec. The area under it would be (0.08 km/s) x (20 sec) = 1.6 km.
Surprise surprise ! The area under a speed/time graph is the distance covered during that time !
In closing, I want to express my gratitude for the gracious bounty of 3 points with which I have been showered. Moreover, the green breadcrust and tepid cloudy water have also been refreshing.
Explanation:
aumenta su velocidad de 60 a 100 Km/h en 20 segundos. Calcular la fuerza resultante que actúa sobre el coche y el espacio recorrido en ese tiempo
First, when the student added the layers of wax over each other, this became a representation of sedimentary rocks.
Then the student folded his/her palm and squeezed the layers of wax. This means that the student applied heat and pressure on the wax (sedimentary rocks)
Referring to the diagram below which represents the rock cycle, we will find that applying heat and pressure on sedimentary rocks would convert these rocks into metamorphic rocks.
Based on the above, the best choice would be:<span>d. Heat and pressure can change sedimentary rocks into metamorphic rocks.</span>