Answer: The temperature of the air affects the speed of sound in the due to the fact that colder contains air molecules with low kinetic energy. For warm air the kinetic energy of the molecules is high causing them to move in rapid motion. Because of these vibrations and collisions sound waves moves in a faster rate.
Explanation:
The shape is missing but let's consider it a semi-cylinder attached to the rectangular prism.
Given:
radius = 4.5 mm
<span>Height = 11 mm </span>
<span>Volume of cylinder = (1/2)(pi)(4.5)^2(11) (the shape is divided into half)
V = 349.89 mm cubed
Volume of prism = L x W x H
= 9 x 11 x 6
= 594 mm cubed
Total volume of the composite shape = 111.375 + 594
= 943.89 mm cubed
Rounded answer = 944 mm cubed.</span>
Answer:
f = 614.28 Hz
Explanation:
Given that, the length of the air column in the test tube is 14.0 cm. It can be assumed that the speed of sound in air is 344 m/s. The test tube is a kind of tube which has a closed end. The frequency in of standing wave in a closed end tube is given by :


f = 614.28 Hz
So, the frequency of the this standing wave is 614.28 Hz. Hence, this is the required solution.
The electrons are in the electron cloud the different field will either wanna connect or not