Answer:
Magnetivity and melting point.
Explanation:
Aluminum, steel and tin cans can be separated by two step process of magnetisation and melting point, because the three cans have different magnetic properties.
Steel attract to magnet easily because of it's has magnetic properties and these separate steel from aluminum.
Neither steel and aluminum melted at 300°C but Tin melt at that temperature.
Answer:
0.712 moles of NO₂ are formed.
Explanation:
First, we need to write the balanced equation:
2 N₂O₅(g) ⇄ 4 NO₂(g) + O₂(g)
From the balanced equation, we can see the relationship between the moles of N₂O₅ and the moles of NO₂. Every 2 moles of N₂O₅ that react, 4 moles of NO₂ are formed. Let us apply this relationship to the information given by the problem (0.356 moles of N₂O₅):

<span>When M(OH)2 dissolves we have
M(OH)2 which produces M2+ and 2OHâ’
pH + pOH=14
At ph =7; we have
7+pOH=14
pOH=14â’7 = 7
Then [OHâ’]=10^(â’pOH)
[OH-] = 10^(-7) = 1* 10^(-7)
At ph = 10. We have,
pOH = 4. And [OH-] = 10^(-4) = 1 * 10^(-4)
Finally ph = 14. We have, pOH = 0
And then [OH-] = 10^(-0) -----anything raised to zero power is 1, but (-0)...
So [OH-] = 1</span>
Answer:
- <em>During the polymerization of a 20 monomer-long cellulose molecule,</em> <u>19 molecules of water are released.</u>
<u></u>
Explanation:
In simple terms, <em>cellulose </em>is the biopolymer formed by many glucose units. This is cellulose is the polymer and glucose is the monomer.
To have a <em>20 monomer-long cellulose molecule</em>, 20 monomers have been chemically bonded by reacting 19 times, as it is explained in the next paragrpahs, and so 19 molecules of water have been released.
You can imaging the polymerization process as a step-by-step reaction in which the first step is the condensation reaction of one glucose molelecule to produce a 2 monomer-long chain, with the release of one molecule of water: the second step would be the condensation reaction between the 2 monomer-long chain with another glucose molecule, with the release of an additional molecule of water, and so on, until 19 condensation reactions happen, to obtain the 20 monomer-long cellulose molecule.
Condensation is the loss of water in a chemical reaction.
When two glucose molecules react together, condensation occurs. One OH group from each glucose molecule come together, the OH from one glucose molecule combines with the H part of the OH from the other glucose molecule, to form H₂O (water that is released).
The two glucose molecules (monomers) will form one bigger molecule where the two glucose monomers are bonded through the oxygen atom that did not form part of the water molecule released.
Then, a 20-monomer chain means 19 condenstation reactions, with the release of 19 molecules of water.