The answer is D: 400N
your welcome
Answer:

Explanation:
This question asks us to find the temperature change given a volume change. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula is:

The volume of the gas starts at 250 milliliters and the temperature is 137 °C.

The volume of the gas is increased to 425 milliliters, but the temperature is unknown.

We are solving for the new temperature, so we must isolate the variable T₂. First, cross multiply. Multiply the first numerator and second denominator, then multiply the first denominator and second numerator.

Now the variable is being multiplied by 250 milliliters. The inverse of multiplication is division. Divide both sides of the equation by 250 mL.


The units of milliliters (mL) cancel.



The temperature changes to <u>232.9 degrees Celsius.</u>
Answer:
It is both accurate and precise.
Explanation:
Precision and accuracy are two different terms used to describe data or measurements. Accuracy refers to how close a set of measurements/experimental values is to an accepted or correct value while Precision refers to how close a series of experimental values are to one another.
In the given set of data in the question below, the Correct Value is 59.2 while the experimental values are as follows;
Trial 1: 58.7
Trial 2: 59.3
Trial 3: 60.0
Trial 4: 58.9
Trial 5: 59.2
Based on comparison, it can be observed that these experimental values are close to the correct value (59.2). Hence, they are said to be ACCURATE. Also, the experimental values are close to one another, hence, they are said to be PRECISE.
Therefore, the data set is both accurate and precise.
The mass of melted gold to release the energy would be 3, 688. 8 Kg
<h3>How to determine the mass</h3>
The formula for quantity of energy is given thus;
Q = n × HF
Where n represents number of moles
HF represents heat of fusion
To find the number of moles, we have
235.0 = n × 12.550
number of moles =
= 18. 725 moles
Note that molar mass of Gold is 197g/ mol
Let's note that;
Number of moles = mass/ molar mass
Mass = number of moles × molar mass
Mass = 18. 725 × 197
Mass = 3, 688. 8 Kg
Thus, the mass of melted gold to release the energy would be 3, 688. 8 Kg
Learn more about molar heat of fusion here:
brainly.com/question/15634085
#SPJ1