Answer:
If you dissolve 58.44g of NaCl in a final volume of 1 liter, you have made a 1M NaCl solution, a 1 molar solution.
Explanation:
Answer:
CH3CH2CH2CH2CH2OH.
Explanation:
Hello.
In this case, since the vapor pressure is known to be the pressure exerted by the gaseous molecules in equilibrium with a liquid, we can infer that the higher the molecule, the lower the vapor pressure because the molecules tend to be help together more strongly and more energy is required to separate them and take them from liquid to gas.
In such a way, since CH3CH2CH2CH2CH2OH is the longest molecule (five carbon atoms) it would be more stable at liquid phase which means that it has less molecules moving to gaseous phase, which is also related with the lowest vapor pressure. Conversely, CH3CH2OH has the highest vapor pressure.
Best regards.
Answer:
The answer to your question is
1.- 1.686 x 10²⁴ atoms
2.- 0.25 moles
Explanation:
1.-
1 mol ---------------- 6.023 x 10²³ atoms
2.8 moles ---------- x
x = (2.8 x 6.023 x 10²³) / 1
x = 1.686 x 10²⁴ atoms
2.- 1 mol ------------------ 6.023 x 10 ²³ molecules
x moles ------------- 1.50 x 10²³ molecules
x = (1.50 x 10²³ x 1) / 6.023 x 10²³
x = 0.25 moles
Answer : The vapor pressure of bromine at
is 0.1448 atm.
Explanation :
The Clausius- Clapeyron equation is :

where,
= vapor pressure of bromine at
= ?
= vapor pressure of propane at normal boiling point = 1 atm
= temperature of propane = 
= normal boiling point of bromine = 
= heat of vaporization = 30.91 kJ/mole = 30910 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:


Hence, the vapor pressure of bromine at
is 0.1448 atm.