For this reaction to proceed, the following bond breaking should occur:
*one C-H bond
* one Cl-Cl bond
After, the following bond formations should occur:
*one C-Cl bond
*one H-Cl bond
Now, add the bond energies for the respective bond energies which can be found in the attached picture. For bond formations, energy is negative. For bond breaking, energy is positive.
ΔHrxn = (1)(413) + (1)(242) + 1(-328) + 1(-431) =
<em>-104 kJ</em>
Explanation:
The solution of the lactic acd and sodium lactate is referred to as a buffer solution.
A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. In this case, the weak acid is the lactic acid and the conjugate base is the sodium lactate.
Buffer solutions are generally known to resist change in pH values.
When a strong base (in this case, NaOH) is added to the buffer, the lactic acid will give up its H+ in order to transform the base (OH-) into water (H2O) and the conjugate base, so we have:
HA + OH- → A- + H2O.
Since the added OH- is consumed by this reaction, the pH will change only slightly.
The NaOH reacts with the weak acid present in the buffer sollution.
Answer:
A.....
Explanation:
Carbon dioxide plus water yields glucose (sugar) and oxygen.
Invertebrates affect the oxygen levels of compost and soil by reducing it.
<h3>How respiration works?</h3>
Cellular respiration is the process by which living organisms obtain energy by breaking down food molecules in their cells.
Every living organism undergoes the process of cellular respiration and make use of oxygen molecules in the process.
This means that invertebrates will make use of the oxygen gas present in compost and the soil for respiration, hereby reducing it.
Learn more about respiration at: brainly.com/question/480297