First, let us calculate the moles of solute or sodium
bicarbonate is in the 1 ml solution.
<span>moles = 1 mL * (1 g
/ 9 mL) = 0.11 moles</span>
The molar mass of sodium bicarbonate is 84 g/mol,
therefore the mass is:
mass = 0.11 moles * 84 g/mol
<span>mass = 9.33 g</span>
The average kinetic energy of translation of oxygen molecules in the gas is 5.05 × 10⁻²¹
The given data is
n = 2
v = 20
P = 92
K.E = 3 / 2 KbT
= 3 / 2 PV / N
= 3 / 2 Pv / nNa
K.E = 3 / 2 × 9 × 1.013 × 10⁵ × 20 × 10⁻³ / 2 × 6.022 × 10²³
K. E = 5.05 × 10⁻²¹ J
<h3>Average kinetic energy</h3>
The average kinetic energy (K) is equal to one half of the mass of each gas molecule times the RMS speed squared
Hence, the average kinetic energy is 5.05 × 10⁻²¹ J
Learn more about the average kinetic energy on
brainly.com/question/3249165
#SPJ4
Answer:
jet streams
Explanation:
THE JET STREAM Narrow bands of exceedingly high speed winds are known to exist in the higher levels of the atmosphere at altitudes ranging from 20,000 to 40,000 feet or more. They are known as jet streams.
The Farenheit and Celcius scales can have negative numbers