Answer: -
15.55 M
35.325 molal
Explanation: -
Let the volume of the solution be 1000 mL.
Density of nitric acid = 1.42 g/ mL
Total Mass of nitric acid Solution = Volume of nitric acid x Density of nitric acid
= 1000 mL x 1.42 g/ mL
= 1420 g.
Percentage of HNO₃ = 69%
Amount of HNO₃ =
= 979.8 g
Molar mass of HNO₃ = 1 x 1 + 14 x 1 + 16 x 3 = 63 g /mol
Number of moles of HNO₃ =
= 15.55 mol
Molarity is defined as number of moles per 1000 mL
We had taken 1000 mL as volume and found it to contain 15.55 moles.
Molarity of HNO₃ = 15.55 M
Mass of water = Total mass of nitric acid solution - mass of nitric acid
= 1420 - 979.8
= 440.2 g
So we see that 440.2 g of water contains 15.55 moles of HNO₃
Molality is defined as number of moles of HNO₃ present per 1000 g of water.
Molality of HNO₃ =
= 35.325 molal
Explanation:
An epidemic (from Greek ἐπί epi "upon or above" and δῆμος demos "people") is the rapid spread of disease to a large number of people in a given population within a short period of time.
Answer:
a molecule always has two or more atoms
Answer:
The answer would be 1.5 kJ.
Explanation:
When you use the equation q = m x c x ∆T you will be able to find the energy gained or lost. The data for the water in this case is just there to distract you so ignore it. :D
Answer:
Potential energy = 441 N
Explanation:
Given:
Mass M = 15 kg
Height = 3 m
Find:
Potential energy
Computation:
Potential energy = mgh
Potential energy = (15)(9.8)(3)
Potential energy = 441 N