Answer:
The equilbrium constant is 179.6
Explanation:
To solve this question we can use the equation:
ΔG = -RTlnK
<em>Where ΔG is Gibbs free energy = 12.86kJ/mol</em>
<em>R is gas constant = 8.314x10⁻³kJ/molK</em>
<em>T is absolute temperature = 298K</em>
<em>And K is equilibrium constant.</em>
Replacing:
12.86kJ/mol = -8.314x10⁻³kJ/molK*298K lnK
5.19 = lnK
e^5.19 = K
179.6 = K
<h3>The equilbrium constant is 179.6</h3>
Answer:
The third one from the left–the graduated cylinder.
Explanation:
The laboratory apparatus that gives an <em>"accurate" </em>or <em>"precise" </em>measurement of a liquid's volume is the<em> graduated cylinder</em>. All you have to do is to pour the liquid into the cylinder and read its measurement using the calibrated scale.
The graduated cylinder comes in different sizes, which means the scale divisions will depend on its size. When reading the measurement, it is important to take note to read at the <u><em>bottom of the meniscus</em></u> because it gives the most accurate volume.
For the reaction;
N2(g) + O2(g) = 2NO(g)
Kp = pNO²/ pN₂pO₂; (No units)
where;
pNO is the partial pressure of NO;
pN₂ is the partial pressure of nitrogen
pO₂ is the partial pressure of Oxygen
The equilibrium constant Kp is deduced from the balanced chemical equation for a reversible reaction, NOT experimental data as is the case for rate expressions in kinetics.
Kp changes with temperature considerably changing the position of an equilibrium, and, at a constant temperature, and therefore constant K, the position of an equilibrium can change significantly depending on relative concentrations/pressures of 'reactants' and 'products'.
Answer:
They had a negative charge
Explanation:
I believe A. Neither can change the number of atoms of each element that are present