Answer:
An alloy is a combination of metals or metals combined with one or more other elements. For example, combining the metallic elements gold and copper produces red gold, gold and silver becomes white gold, and silver combined with copper produces sterling silver. Elemental iron, combined with non-
Explanation:
that's what an alloy is all the rocks including gold silver combined with copper and sterling silver
Answer:
The correct option is c
Explanation:
The chemical equation for the reaction of Z-4,5-dimethyloct-4-ene and HCl is shown on the first uploaded image
Now looking at the product we see that there are two who has four different groups attached to them this carbon are known as chiral carbons hence the product formed is a pair of diastereomers
Given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
<h3>How to calculate mass of substances?</h3>
The mass of a substance can be calculated using the following steps:
Cu + 2AgNO3 = Cu(NO3)2 + 2Ag
1 mole of Cu react with 2 moles of AgNO3
- Molar mass of AgNO3 = 169.87 g/mol
- Molar mass of Cu = 63.5g/mol
moles of AgNO3 = 262g/169.87g/mol = 1.54mol
1.54 moles of AgNO3 will react with 0.77 moles of Cu.
mass of Cu = 0.77 × 63.5 = 48.97g
Therefore, given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
Learn more about mass at: brainly.com/question/6876669
pH solution = 8.89
<h3>Further explanation</h3>
Given
The concentration of HBr solution = 1.3 x 10⁻⁹ M
Required
the pH
Solution
HBr = strong acid
General formula for strong acid :
[H⁺]= a . M
a = amount of H⁺
M = molarity of solution
HBr⇒H⁺ + Br⁻⇒ amount of H⁺ = 1 so a=1
Input the value :
[H⁺] = 1 x 1.3 x 10⁻⁹
[H⁺] = 1.3 x 10⁻⁹
pH = - log [H⁺]
pH = 9 - log 1.3
pH = 8.89
Here we have to draw the mechanism of the reduction reaction between benzaldehyde and sodium borodeuteride to form the corresponding alcohol.
The reducing agent sodium borodeuteride can reduce the aldehydes to its corresponding alcohol. The reaction mechanism is shown in the attached image.
The reaction mechanism can be explained as-
The sodium borodeuteride is highly ionic in nature thus it remains as Na⁺ and BD₄⁻ The deuterium atom of BD₄⁻ attack the carbonyl carbon atom and substitute one of its deuterium as shown in the figure.
One molecule of sodium borodeuteride can reduce four molecules of benzaldehyde. The polar solvent like alcohol donates the proton as shown in the mechanism.
The converted alcohol contains the deuterium atom at the -C center. Thus benzaldehyde is converted to deuteroted benzyl alcohol.