Answer:
V = 44.85 L
Explanation:
Given data:
Volume of H₂ = ?
Number of moles of H₂ = 2.0 mol
Given temperature = 273.15 K
Given pressure = 1 atm
Solution:
Formula:
PV = nRT
P = Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm × V = 2.0 mol × 0.0821 atm.L/ mol.K × 273.15 K
V = 44.85 atm.L / 1 atm
V = 44.85 L
Hi there! Air and sunlight can definitely be reused. Those are abundant and renewable resources. Therefore, A and D are eliminated. There is a limited amount of water, however, it's impossible to run out of it to the point that there's no more on Earth. C is out. The only answer choice that makes sense is coal, because it's a nonrenewable resource, and it takes millions of years to make more of. It's a fossil fuel, so once we use them up, we can't get anymore during our lives. The answer is B: coal.
The balanced chemical reaction is:
N2 + 3H2 = 2NH3
We are given the amount of hydrogen gas to be used in the reaction. This will be the starting point of the calculations.
24.0 mol H2 (2 mol NH3 / 3 mol H2 ) = 16 mol NH3
Therefore, ammonia produced from the reaction given is 16 moles.
There will be 7.5 g of Be-11 remaining after 28 s.
If 14 s = 1 half-life, 28 s = 2 half-lives.
After the first half-life, ½ of the Be-11 (15 g) will disappear, and 15 g will remain.
After the second half-life, ½ of the 15 g (7.5 g) will disappear, and 7.5 g will remain.
In symbols,
<em>N</em> = <em>N</em>₀(½)^<em>n</em>
where
<em>n</em> = the number of half-lives
<em>N</em>₀ = the original amount
<em>N</em> = the amount remaining after <em>n</em> half-lives