<span>100,000 times more. The rule is that the product of the concentration of (H+) and (OH-) in molars is always 10^-14 (if it is more, they combine and produce simple water which brings the product back down to this number again. If it is less, water molecules will split to bring the product back up to equilibrium).
pH 9 means (H+) is 10^-9 molar. But that means (OH-) is 10^-5 at the same time.
pH 4 means (H+) is 10^-4 molar. But that means (OH-) is 10^-10 at the same time.
10^-5 / 10^-10 = 10^5 or 100,000 times more.</span>
You just switch them around
Answer: 72L of 30% and 128L of 80%
You can determine the weight of the acid by multiplying the concentration with the volume. Let say v1 is the volume of 30% solution needed and v2 is the volume of 80% solution.
The weight of acid from the used solution should be equal to the product. You can get this equation
final solution= solution1 + solution2
200l * 62%= v1 * 30% + v2*80%
124L= 0.3v1 + 0.8v2
124L- 0.3v1= 0.8v2
v2=155L- 0.375v1
The total volume of both should be 200l. If you use the previous equation, you can calculate:
v1+v2=200L
v1+ (155L- 0.375v1)= 200L
0.625v1= 200L - 155L
v1= 45/ 0.625= 72L
v1+v2=200L
v2= 200L- 72L= 128L
Answer:
116.88 g
Explanation:
Step 1: Write the balanced equation for the synthesis of NaCl
Na + 1/2 Cl₂ ⇒ NaCl
Step 2: Calculate the moles corresponding to 45.978 g of Na
The molar mass of Na is 22.990 g/mol.
45.978 g × 1 mol/22.990 g = 1.9999 mol
Step 3: Calculate the number of moles of NaCl formed from 1.9999 moles of Na
The molar ratio of Na to NaCl is 1:1. The moles of NaCl formed are 1/1 × 1.9999 mol = 1.9999 mol.
Step 4: Calculate the mass corresponding to 1.9999 moles of NaCl
The molar mass of NaCl is 58.443 g/mol.
1.9999 mol × 58.443 g/mol = 116.88 g
Answer:
Six
Explanation:
Oxygen has six valence electrons in its elemental form so its formal charge is 6 – 6 = 0. Each hydrogen atom owns one electron [(2x½) = 1].