Answer:
1.05 J.
Explanation:
Kinetic Energy: This is the energy possessed by a body due to its motion. The S.I unit of kinetic energy is Joules (J). The formula of kinetic energy is given as
Ek = 1/2mv²................. Equation 1
Where Ek = kinetic energy, m = mass of the uniform rod, v = liner velocity of the rod.
But,
v = αr .......................... Equation 2
Where α = angular velocity of the rod, r = radius of the circle.
Given: α = 3.6 red/s, r = 120/2 = 60 cm = 0.6 m.
Substitute into equation 2
v = 3.6(0.6)
v = 2.16 m/s.
Also given: m = 450 g = 0.45 kg.
Substitute into equation 1
Ek = 1/2(0.45)(2.16²)
Ek = 1.05 J.
Cold front because the warm front or hit front is lower on the right and goes downwards and cold front is in the middle and goes to Minneapolis
Answer:
Fatigue is usually defined as the reversible decline of performance during activity, and most recovery occurs within the first hour. However, there is also a slowly reversible component that can take several days to reverse (155). Muscle injury also causes a decline in performance that reverses only very slowly.
Answer:
The upper motor neurons synapse in the spinal cord connect with anterior horn cells of lower motor neurons, usually via interneurons. The anterior horn cells are the cell bodies of the lower motor neurons and are located in the grey matter of the spinal cord.
Explanation:
Interneurons are the central nodes of neural circuits, enabling communication between the upper motor neurons, sensory or motor neurons located in the brain and spinal cord and they send signals to lower motor neurons or central nervous system (CNS) in the brain stem and spinal cord . When they get a signal from the upper motor neurons, they send another signal to your muscles to make them contract. They play vital roles in reflexes, neuronal oscillations, and neurogenesis in the adult mammalian brain.
Renshaw cells are among the very first identified interneurons. They are excited by the axon collaterals of the motor neurons. In addition, Renshaw cells make inhibitory connections to several groups of motor neurons.
Answer:
P₁- P₂ = 91.1 10³ Pa
Explanation:
For this exercise we will use Bernoulli's equation, where point 1 is at the bottom of the house and point 2 on the second floor
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
P1-P2 = ½ ρ (v₂² - v₁²) + ρ g (y₂-y₁)
In the exercise they give us the speeds and the height of the turbid, so we can calculate the pressure difference
For heights let's set a reference system on the ground floor of the house, so we have 5m for the second floor and an entrance at -2m
P₁-P₂ = ½ 1.0 10³ (7² - 2²) + 1.0 10³ 9.8 (5 + 2)
P₁-P₂ = 22.5 10³ + 68.6 10³
P₁- P₂ = 91.1 10³ Pa