Answer:
physics, escape velocity is the minimum speed needed for an object to escape from the gravitational influence of a massive body. The escape velocity from Earth is about 11.186 km/s (6.951 mi/s; 40,270 km/h; 25,020 mph)[1] at the surface. ... [2] Speeds higher than escape velocity have a positive speed at infinity.
Answer:
time is 5.973826 sec
Explanation:
Given data
diameter D = 6.0 mm 6×
m
separated d = 0.010 m
distance (dis) 185 m
speed s = 16 m/s
wavelength = 550 nm = 550
m
to find out
How much time passes
solution
we know that for resolution we use Rayleigh's Criterion i.e
θ = 1.22 wavelength / diameter = separated / distance 1
we calculate distance 1 by put value wavelength, diameter and separated
distance 1 = diameter × separated / 1.22 wavelength
distance 1 = 6×
× 0.010 / 1.22 × 550 × 
distance 1 = 89.418778
so time will be i.e = distance (dis) - distance 1 / speed
time = ( 185 - 89.418778) / 16
time = 5.973826 sec
time is 5.973826 sec
Answer:
The amplitude of the wing tip's motion is 1.6 mm.
Explanation:
Given that,
Beat = 250 /s
Speed = 2.5 m/s
We need to calculate the amplitude of the wing tip's motion
Using the equation for the maximum velocity


Where,
v = speed
f = frequency
A = amplitude
Put the value into the formula



Hence, The amplitude of the wing tip's motion is 1.6 mm.
Answer:
Emec = 94050 [J]
Explanation:
In order to solve this problem, we must understand that all thermal energy is converted into mechanical energy.
The thermal energy can be calculated by means of the following expression.

where:
Q = heat [J]
Cp = specific heat of water = 4186 [J/kg*°C]
m = mass = 300 [g] = 0.3 [kg]
T_final = 95 [°C]
T_initial = 20 [°C]
Now we can calculate the heat, replacing the given values:
![Q=0.3*4180*(95-20)\\Q= 94050[J]](https://tex.z-dn.net/?f=Q%3D0.3%2A4180%2A%2895-20%29%5C%5CQ%3D%2094050%5BJ%5D)
Since all this energy must come from the mechanical energy delivered by the exercise bike, and no energy is lost during the process, the mechanical energy must be equal to the thermal energy.
![Q=E_{mec}\\E_{mec}=94050[J]](https://tex.z-dn.net/?f=Q%3DE_%7Bmec%7D%5C%5CE_%7Bmec%7D%3D94050%5BJ%5D)
Answer:
Option C. 1.2 m
Explanation:
The following data were obtained from the question:
horizontal velocity (u) = 2.08 m/s
Horizontal distance (s) = 0.96 m
Height (h) of the table =?
Next, we shall determine the time taken for the lab cart to get to the ground. This can be obtained as follow:
horizontal velocity (u) = 2.08 m/s
Horizontal distance (s) = 0.96 m
Time (t) =?
s = ut
0.96 = 2.08 × t
Divide both side by 2.08
t = 0.96 / 2.08
t = 0.5 s
Finally, we shall determine the height of the table as illustrated below:
Time (t) = 0.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) of the table =?
h = ½gt²
h = ½× 9.8 × 0.5²
h = 4.9 × 0.25
h = 1.2 m
Thus, the height of the table is 1.2 m