The correct answe is South Africa - Economic Growth and Development:
After the formal end of the previous apartheid system two decades ago, South Africa can now boast having one of the richest economies in Africa and a well-functioning democracy. It is the largest economy in Africa, but it also has deeply ingrained structural issues that limit its ability to expand and flourish.
One of the largest economies on the African continent is that of South Africa. However, despite a period of rapid development from 2003 to 2007, its real GDP average yearly growth rate between 2001 and 2010 has been very weak and unquestionably significantly below the African average. A number of African nations have had substantially faster growth rates, which has improved a number of development-related indices.
By the standards of the recent growth records of several Euro Zone nations, South Africa's development is hardly sluggish! One crucial aspect of the economy is that South Africa has achieved relatively modest progress in meeting a number of important development targets and some of the Millennium Development Goals, but her economy does not appear to have achieved the "take-off" required to kick start significant development progress, especially against the backdrop of her deep social problems.
To learn more about South Africa's development refer the link:
brainly.com/question/24400106
#SPJ9
Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Explanation:
Given that;
mass of vehicle m = 1000 kg
for a low speed test; V = 2.5 m/s
bumper maximum deflection = 4 cm = 0.04 m
First we determine the energy of the vehicle just prior to impact;
W_v = 1/2mv²
we substitute
W_v = 1/2 × 1000 × (2.5)²
W_v = 3125 J
now, the the effective design stiffness k will be:
at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;
hence;
W_v = 1/2kx²
we substitute
3125 = 1/2 × k (0.04)²
3125 = 0.0008k
k = 3125 / 0.0008
k = 3906250 N/m
Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Answer:
t = 23.9nS
Explanation:
given :
Area A= 10 cm by 2 cm => 2 x 10^-2m x 10 x 10^-2m
distance d= 1mm=> 0.001
resistor R= 975 ohm
Capacitance can be calculated through the following formula,
C = (ε0 x A )/d
C = (8.85 x 10^-12 x (2 x 10^-2 x 10 x 10^-2))/0.001
C = 17.7 x 10^-12 (pico 'p' = 10^-12)
C = 17.7pF
the voltage between two plates is related to time, There we use the following formula of the final voltage
Vc = Vx (1-e^-(t/CR))
75 = 100 x (1-e^-(t/CR))
75/100 = (1-e^-(t/CR))
.75 = (1-e^-(t/CR))
.75 -1 = -e^-(t/CR)
-0.25 = -e^-(t/CR) --->(cancelling out the negative sign)
e^-(t/CR) = 0.25
in order to remove the exponent, take logs on both sides
-t/CR = ln (0.25)
t/CR = -ln(0.25)
t = -CR x ln (0.25)
t = -(17.7 x 10^-12 x 975) x (-1.38629)
t = 23.9 x
t = 23.9ns
Thus, it took 23.9ns for the potential difference between the deflection plates to reach 75 volts
Answer:
Mass is the quantity of matter contained in a body. The mass of an object is measured in kilogram (kg).
Explanation:
Answer: 0.2 hours
Explanation: In order to solve this question we have to considerer that a recargeable battery can supply 1800 mA in one hour then we have to determine how long could this battery drive current through a long, thin wire of resistance 34 Ω .
Besides, this battery has a voltage of 12 V
so by using the Ohm law we also know that V=R*I,
Fron this we can obtain:
I= V/R= 12 V/ 34 Ω=0.35 A= 350 mA
then considering that this battery can supply 1800 mA in one hour we have this battery can supply 350 mA in x time in the form:
1hour------- 1800 mA
x hour--------350 mA
time= 350/1800= 0.2 hour