Answer:
0.08 moles
Explanation:
Relative atomic mass of KMnO4 = K + Mn + O4 = 39 + 55 + 16 x 4 = 158
=> Moles in 13g of KMnO4 =
=
= 0.082278.. = 0.08 moles
About 5% of high school seniors reportmisusing prescription
Answer:
1) acetylide
2) enol
3) aldehydes
4) tautomers
5) alkynes
6) Hydroboration
7) Keto
8) methyl ketones
Explanation:
Acetylide anions (R-C≡C^-) is a strong nucleophile. Being a strong nucleophile, we can use it to open up an epoxide ring by SN2 mechanism. The attack of the acetylide ion occurs from the backside of the epoxide ring. It must attack at the less substituted side of the epoxide.
Oxomercuration of alkynes and hydroboration of alkynes are similar reactions in that they both yield carbonyl compounds that often exhibit keto-enol tautomerism.
The equilibrium position may lie towards the Keto form of the compound. Usually, if terminal alkynes are used, the product of the reaction is a methyl ketone.
Answer:
43.05 moles of Al needed to react with 28.7 moles of FeO.
Explanation:
Given data:
Moles of FeO = 28.7 mol
Moles of Al needed to react with FeO = ?
Solution:
Chemical equation:
2Al + 3FeO → 3Fe + Al₂O₃
Now we will compare the moles of Al with FeO.
FeO : Al
2 : 3
28.7 : 3/2×28.7 = 43.05 mol
Thus 43.05 moles of Al needed to react with 28.7 moles of FeO.
Answer:
Molecular solids and covalent network solids are two types of solid compounds. The key difference between molecular solid and covalent network solid is that <em>molecular solid forms due to the action of Van der Waal forces </em>where as <em>covalent network solid forms due to the action of covalent chemical bonds.</em>
hope this helps