Answer: When you divide by 100 you are essentially moving the decimal of the number two places to the left. In undoing this you would have to move the decimal of the number two places to the right.
28.003 would then turn into 2,800.3
Step-by-step explanation:
Unfortunately I cannot draw a chart on here but that is the best I can do.
Answer:

Step-by-step explanation:
A 3D figure is given to us and we need to find the Total Surface area of the 3D figure . So ,
From the cuboid we can see that there are 5 squares in one row on the front face . And there are two rows. So the number of squares on the front face will be 5*2 = 10 .
We know the area of square as ,
Hence the area of 10 squares will be 10x² , where x is the side length of each square. Similarly there are 10 squares at the back . Hence their area will be 10x² .
Also there are in total 12 squares sideways 6 on each sides . So their surface area will be 12x² . Hence the total surface area in terms of side of square will be ,
Now let's find out the TSA in terms of side . So here the lenght of the cuboid is equal to the sum of one of the sides of 5 squares .


Hence the TSA of cuboid in terms of lenght and breadth is :-

Answer:the length 7
Step-by-step explanation:each one is times 3 6x3 8x3 3x7=21
Answer:

Step-by-step explanation:
Quadratic function-
It is a function that can be represented by an equation of the form
, where
In a quadratic function, the greatest power of the variable is 2.
As in the first option the highest power is 3, so it is not a quadratic function.
Even though the power of x is 2 in the third option, but as it is in the denominator, so the overall power of x becomes -2. Hence it is not a quadratic function.
As the coefficient of
is 0 in case of fourth option, so it is not a quadratic function.
Equation in option 2 satisfies all the conditions of quadratic function, hence it is the quadratic function.
We have that
point C and point D have y = 0-----------> (the bottom of the trapezoid).
point A and point B have y = 4e ---------- > (the top of the trapezoid)
the y component of midpoint would be halfway between these lines
y = (4e+ 0)/2 = 2e.
<span>the x component of the midpoint of the midsegment would be halfway between the midpoint of AB and the midpoint of CD.
x component of midpoint of AB is (4d + 4f)/2.
x component of midpoint of CD is (4g + 0)/2 = 4g/2.
x component of a point between the two we just found is
[(4d + 4f)/2 + 4g/2]/2 = [(4d + 4f + 4g)/2]/2 = (4d + 4f + 4g)/4 = d + f + g.
</span>therefore
the midpoint of the midsegment is (d + f + g, 2e)