Answer:
- 13,150.6kJ
Explanation:
CH4 + 2 O2 ------> CO2 + 2 H2O ΔH= – 890 kJ
The ΔH is enthalpy change of combustion , which is the heat is either absorbed or released by the combustion of one mole of a substance.
ΔH=−890 kJ/mol (released in the combustion of one mole of methane)
using the molar mass (in grams )of methane to get moles of sample
(237g × 1 mole of CH4)/16.04g=14.776 moles of CH4
Since 1 mole produces 890 kJ of heat upon combustion, then 14.776 moles will produce
ΔH = 14.776moles of CH4 × 890kJ/1mole of CH4
=13,150.6kJ
Therefore ΔH = - 13,150.6kJ
-20.16 KJ of heat are released by the reaction of 25.0 g of Na2O2.
Explanation:
Given:
mass of Na2O2 = 25 grams
atomic mass of Na2O2 = 78 gram/mole
number of mole = 
= 
=0. 32 moles
The balanced equation for the reaction:
2 Na2O2(s) + 2 H2O(l) → 4 NaOH(aq) + O2(g) ∆Hο = −126 kJ
It can be seen that 126 KJ of energy is released when 2 moles of Na2O2 undergoes reaction.
similarly 0.3 moles of Na2O2 on reaction would give:
= 
x = 
= -20.16 KJ
Thus, - 20.16 KJ of energy will be released.
Answer:
D. a reactant that is catalyzed by an enzyme
Explanation:
um
search engime
Answer:
2.03 moles of Gold
Explanation:
Gold is one of the most precious metal metal used in many applications and mainly as a jewellery. In terms of purity it is categorized in Karats. 24 Karat is considered the purest Gold (i.e. 100 % Gold) while other Karats (14, 18, 22 e.t.c) are alloys with other metals and gyms.
Data Given:
Mass of Gold = 400 g
A.Mass of Gold = 196.97 g.mol⁻¹
Calculate Moles of Gold as,
Moles = Mass ÷ M.Mass
Putting values,
Moles = 400 g ÷ 196.97 g.mol⁻¹
Moles = 2.03 moles of Gold
Your body uses it to build and repair tissue. You need it to make enzymes, hormones, and other body chemicals. It is an important building block of bones, muscles, cartilage, skin, and blood. Along with fat and carbohydrates.