Answer:
The the speed of the car is 26.91 m/s.
Explanation:
Given that,
distance d = 88 m
Kinetic friction = 0.42
We need to calculate the the speed of the car
Using the work-energy principle
work done = change in kinetic energy



Put the value into the formula


Hence, The the speed of the car is 26.91 m/s.
Answer:
At time 10.28 s after A is fired bullet B passes A.
Passing of B occurs at 4108.31 height.
Explanation:
Let h be the height at which this occurs and t be the time after second bullet fires.
Distance traveled by first bullet can be calculated using equation of motion

Here s = h,u = 450m/s a = -g and t = t+3
Substituting

Distance traveled by second bullet
Here s = h,u = 600m/s a = -g and t = t
Substituting

Solving both equations

So at time 10.28 s after A is fired bullet B passes A.
Height at t = 7.28 s

Passing of B occurs at 4108.31 height.
By abrasion, the sediment in the wind promotes erosion. The wind scatters sand, sand dunes created. When clay and silt are deposited by the wind. The presence of vegetation ground helps stop wind erosion.
<h3>What is an erosion ?</h3>
Earthen materials were worn away during erosion, a geological process in which they are moved by water or wind. Weathering, a related process that does not involve movement, dissolves and breaks down rock.
<h3>What is caused by erosion?</h3>
The process through which the Earth's surface ages is known as erosion. Natural forces like wind or glacier ice can create erosion. But when it comes to altering the Earth, nothing compares to a slow, constant movement of water, as anyone who has ever seen a picture of a Grand Canyon will attest.
To know more about Erosion visit:
brainly.com/question/3852201
#SPJ13
I think it's b..................
Answer:
C. rollback
Explanation:
The retina of the eye is located inside the eye making it impossible for the retina to roll back. Only the eye itself can rollback.