Answer:
25 N
Explanation:
Work is a product of force and perpendicular distance moved.
W=Fd where F is force exerted and d is perpendicular distance.
However, for this case, the distance is inclined hence resolving it to perpendicular so that it be along x-axis we have distance as 
Therefore, 
Making F the subject of the formula then
where
is the angle of inclination. Substituting 190 J for W then 18 degrees for
and 8 m for d then
Answer:
y = 77.74 10⁻⁵ m
Explanation:
For this exercise we can use Newton's second law
F = m a
a = F / m
a = 4.9 10⁻¹⁶ / 9.1 10⁻³¹
a = 0.538 10¹⁵ m / s
This is the vertical acceleration of the electron.
Now let's use kinematics to find the time it takes to move the
x= 29 mm = 29 10⁻³ m
On the x axis
v = x / t
t = x / v
t = 29 10⁻³ / 1.7 10⁷
t = 17 10⁻¹⁰ s
Now we can look for vertical distance at this time.
y =
t + ½ a t²
y = 0 + ½ 0.538 10¹⁵ (17 10⁻¹⁰)²
y = 77.74 10⁻⁵ m
Answer:
the limbic system has its input and processing side (the limbic cortex, amygdala and hippocampus) and an output side (the septal nuclei and hypothalamus).
Explanation:
hope it helps
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.