Answer:
1.
2.
Explanation:
Polarizes axis can create two possible angles with the vertical.
first we have to find the intensity of first polarizer
which is given as



For a smaller angle for the first polarizer:
According to Malus Law



taking square root on both sides



For a larger angle for the first polarizer:
According to Malus Law


taking square root on both sides



Explanation:
63 kg ice skater finishes her performance and crossed the finish line with a speed of 10.8 m/s
Answer: D
Explanation:
When an object falls gravity is pulling down on it and is picking up speed, but as it gains speed air resistance becomes a faster. Air resistance increases with speed. And that force keeps it from accelerating eventually the object will pick up speed such that the force due to air resistance will keep it from getting any more speed at that point force due to air resistance is equal to its weight (mg) and the net force is equal to zero so it won’t accelerate any more at that point it is said to be moving in terminal velocity.
When an object has reached terminal velocity, it will have a constant velocity
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
The force exerted by a pressure of any gas over a surface its given by the formula P=F/S (where P is pressure, F force and S surface).
We can multiply both sides of the formula by S to obtain the force.
P*S=(F*S)/S
P*S=F
Solve for P=1.80*10^5 Pa and S=4.10*10^-4 m^2 ([Pa] =[N/m^s])
(1.80*10^5 N/m^s) * (4.10*10^-4 m^2) =F
73.8 N =F