Answer:
3.196 m/s
Explanation:
Parameters given:
Mass of Brittany and the skateboard, M = 62 kg
Mass of pumpkin, m = 3.7 kg
Initial speed of Brittany and the skateboard, U = 0 m/s
Final velocity of Brittany, the skateboard and the pumpkin, V = v = 0.18 m/s
We can solve this problem by applying the principle of conservation of momentum.
It states that the total final momentum of a system is equal to the total initial momentum of the system.
M*U + m*u = M*V + m*v
Where u is the initial velocity of the pumpkin.
Since the final velocity of Brittany and the skateboard is equal to the final velocity of pumpkin:
M*U + m*u = (M + m) *v
Solving this to get u:
(62 * 0) + (3.7 * u) = (62 + 3.7) * 0.18
0 + 3.7u = 65.7 * 0.18
3.7u = 11.826
u = 11.826 / 3.7
u = 3.196 m/s
The initial velocity of the pumpkin was 3.196 m/s.
Answer:
<em>The power generated is = 5.33×10⁸ Watt. </em>
Explanation:
Power: Power can be defined as the time rate of doing work. The S.I unit of power is <em>Watt(W).</em>
<em>Mathematically,</em>
<em>Power (P) = Work done/time or Energy/time</em>
P = mgh/t............................... Equation 1
P = δgh............................. Equation 2
Where δ = fall rate, g = acceleration due to gravity, h = height.
<em>Given: </em>δ = 1.1×10⁶ kg/s, h = 49.4 m g = 9.81 m/s²
Substituting these values into equation 2
P = 1.1×10⁶×49.4×9.81
P = 533.08×10⁶
<em>P = 5.33×10⁸ Watt.</em>
<em>Thus the power generated is = 5.33×10⁸ Watt. </em>
Answer:
KE = 2.535 x 10⁷ Joules
Explanation:
given,
angular speed of the fly wheel = 940 rad/s
mass of the cylinder = 630 Kg
radius = 1.35 m
KE of flywheel = ?
moment of inertia of the cylinder

=
= 574 kg m²
kinetic energy of the fly wheel

KE = 2.535 x 10⁷ Joules
the kinetic energy of the flywheel is equal to KE = 2.535 x 10⁷ Joules
Answer:
incorrect its 987 for exact