Answer: Stay the same, 100
Step-by-step explanation: well 7%-7% still equals zero. So it’s not effected, I think.
Answer:
The solutions are y=0, -5/2
Step-by-step explanation:
-3y(2y+5)=0
We can use the zero product property
-3y =0 2y+5 =0
y =0 2y = -5
y = -5/2
The solutions are y=0, -5/2
Answer: it wont let me see the picture so i cant help you
Step-by-step explanation:
Answer:
Fifth Score = 87
Sixth Score = 95
Step-by-step explanation:
Given
![Average = 85](https://tex.z-dn.net/?f=Average%20%3D%2085)
![Scores = 83, 78, 87, 80](https://tex.z-dn.net/?f=Scores%20%3D%2083%2C%2078%2C%2087%2C%2080)
![Fifth\ score = x](https://tex.z-dn.net/?f=Fifth%5C%20score%20%3D%20x)
![Sixth\ Score = 8 + x](https://tex.z-dn.net/?f=Sixth%5C%20Score%20%3D%208%20%2B%20x)
Required
Set up an equation
Solve for the fifth and sixth score
Average is calculated as thus:
![Average = \frac{\sum x}{n}](https://tex.z-dn.net/?f=Average%20%3D%20%5Cfrac%7B%5Csum%20x%7D%7Bn%7D)
![Average = \frac{83 +78 + 87 + 80 + x + 8 + x}{6}](https://tex.z-dn.net/?f=Average%20%3D%20%5Cfrac%7B83%20%2B78%20%2B%2087%20%2B%2080%20%2B%20x%20%2B%208%20%2B%20x%7D%7B6%7D)
Substitute 85 for Average
![85 = \frac{83 +78 + 87 + 80 + x + 8 + x}{6}](https://tex.z-dn.net/?f=85%20%3D%20%5Cfrac%7B83%20%2B78%20%2B%2087%20%2B%2080%20%2B%20x%20%2B%208%20%2B%20x%7D%7B6%7D)
![85 = \frac{83 +78 + 87 + 80 + 8+ x + x}{6}](https://tex.z-dn.net/?f=85%20%3D%20%5Cfrac%7B83%20%2B78%20%2B%2087%20%2B%2080%20%2B%208%2B%20x%20%20%2B%20x%7D%7B6%7D)
![85 = \frac{336+ 2x}{6}](https://tex.z-dn.net/?f=85%20%3D%20%5Cfrac%7B336%2B%202x%7D%7B6%7D)
Multiply both sides by 6
![85 * 6 = 336 + 2x](https://tex.z-dn.net/?f=85%20%2A%206%20%3D%20336%20%2B%202x)
![510= 336 + 2x](https://tex.z-dn.net/?f=510%3D%20336%20%2B%202x)
Solve for 2x
![2x = 510 - 336](https://tex.z-dn.net/?f=2x%20%3D%20510%20-%20336)
![2x = 174](https://tex.z-dn.net/?f=2x%20%3D%20174)
Solve for x
![x = 174/2](https://tex.z-dn.net/?f=x%20%3D%20174%2F2)
![x = 87](https://tex.z-dn.net/?f=x%20%3D%2087)
Hence:
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>