The sun has orbited along time so when they ask theses questions I give you the right answer I think lol
The image distance can be determined using the mirror equation: 1/f = 1/d_o + 1/d_i, where, f is the focal length, d_o is the object distance, and d_i is the image distance. Given that f = 28.2 and d_o = 33.2 cm, the value of d_i is calculated to be 187.248 cm. On the other hand, the image height is obtained using the magnification equation wherein, h_i/h_o = -d_i/d_o, where h_i is the image height and h_o is the object height. Using the given values, h_i is equal to -26.79 cm. Note that the negative sign indicates that the image is inverted.
There's a crest and a trough in each complete wave. So the question is describing 10 complete waves.
After that, the question becomes somewhat murky. It goes on to say "its time period is 0.2 seconds".
-- The "time period" of a wave is usually defined as the time for <u><em>one</em></u> complete wave. If that's what the phrase means, then ...
Frequency = ( 1/0.2sec )
<em>Frequency = 5 Hz.</em>
<em>= = = = = = = = = =</em>
<u>BUT</u> ... Is the question awkwardly trying to tell us that the <u><em>10 waves</em></u> take 0.2 seconds ? If that's what it's saying, then ...
Frequency = (10) / (0.2 sec)
<em>Frequency = 50 Hz .</em>