Answer: I actually need the same answer
Explanation:
Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Acceleration = (change in speed) / (time for the change)
change in speed = (speed at the end) minus (speed at the beginning)
change in speed = (zero) minus (28 m/s) = -28 m/s
Acceleration = (-28 m/s) / (13 sec)
Acceleration = -2.15 m/s²
Answer:
This property could be used to create technologically-advanced tools or machines that could easily locate the mineral deposits.
Explanation:
Mineral deposits are hard to find, unless you have the skill or the proper tools in locating them. This is the reason why many people are mining in order to explore the different areas where they could find these deposits.
If one would consider the property of minerals, such as being good conductors of heat and electricity,<u> then they could create a tool or machine that would aid in their exploration.</u> Inventors could probably come up with a sensitive detector which signals when it reaches an area of high heat and electric conductivity. Since most minerals such as <em>gold, silver, copper, galena, bornite </em>and the like have this property, then miners will have a lesser amount of time looking for them.
If this technology will be implemented, though, regulation policy must be strictly implemented because it might lead to<em> over-mining</em> thus leading to the depletion of mineral deposits.
The actual question should be did the sound waves escape room?
Yes they can escape the room
- Sound always needs a medium to travel through
- If you close the room form all where that even air can't go outside you will be able to hear no sound coming from room .