Answer:
Lone pairs cause bond angles to deviate away from the ideal bond angles
Explanation:
Bonded electrons are stabilized and clustered between the bonding electrons meaning they are much closer together. Non-bonding electrons however are not being shared between any atoms which allows them to roam a little further spreading the charge density over a larger space and therefore interfering with what would be an expected bond angle
The Answer that makes the most sense is C.
Answer:
A wave is a disturbance of the space (or of a medium), that carries energy without transmitting matter.
A wave is produced when there is a periodic vibration in the particles of a medium (mechanical wave), or when there is a periodic oscillation of the electric and magnetic fields (electromagnetic waves). Electromagnetic waves are the only ones that can travel through a vacuum.
Mechanical waves are further classified into two types, depending on how the particles in the medium vibrate:
- If they vibrate up and down (perpendicular to the direction of motion of the wave), they are called transverse waves
- If they vibrate back and forth (parallel to the direction of motion of the wave), they are called longitudinal waves
In general, waves are generated from a precise point in the space, which is called source of the wave. The source of the wave does work, since it is responsible for starting the motion of the particle, and make them starting vibrating, so it transmits energy to the particles.
Explanation:
Draw a free body diagram for each disc.
Disc A has three forces acting on it: 86.5 N up, T₁ down, and Wa down.
∑F = ma
86.5 N − T₁ − Wa = 0
Wa = 86.5 N − T₁
ma × 9.8 m/s² = 86.5 N − 55.6 N
ma = 3.2 kg
Disc B has three forces acting on it: T₁ up, T₂ down, and Wb down.
∑F = ma
T₁ − T₂ − Wb = 0
Wb = T₁ − T₂
mb × 9.8 m/s² = 55.6 N − 36.5 N
mb = 1.9 kg
Disc C has three forces acting on it: T₂ up, T₃ down, and Wc down.
∑F = ma
T₂ − T₃ − Wc = 0
Wc = T₂ − T₃
mc × 9.8 m/s² = 36.5 N − 9.6 N
mc = 2.7 kg
Disc D has two forces acting on it: T₃ up and Wd down.
∑F = ma
T₃ − Wd = 0
Wd = T₃
md × 9.8 m/s² = 9.6 N
md = 0.98 kg