Answer:
A.
Step-by-step explanation:
12.5/10=1.25.
12.5/8=1.56
12.5/12=1.04
12.5/6=2.08
it's important to know what 1/2 is, 1/3 is, 1/4 is and 1/5 it's also important to know things like 2/2, 2/3, 3/3, 2/4, 3/4, 4/4, 2/5, 3/5, 4/5, and 5/5. You don't need this until 8th grade though. But get on it if you can. Ask your parents or teacher.
Answer:
no writting shown but
Step-by-step explanation:
i guess its super cool encouragement is the most
Step-by-step explanation:
SA=ph+2A, that is, perimeter × height+ twice area
p=21+20+29=70cm
h=22cm
70×22=1540cm
A=1/2 ×20×21=210×2=420
1540+420=1960cm2
Answer:
Yes
Step-by-step explanation:
Congruent means equivalent so if <6 is = to <3 then due to <3 being = to <1 <6 also has to be = to <1.
Step-by-step explanation:
<h3>Appropriate Question :-</h3>
Find the limit
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)

Given expression is
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
On substituting directly x = 1, we get,


which is indeterminant form.
Consider again,
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
can be rewritten as
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%203x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%202x%20-%20x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20x%28x%20-%202%29%20-%201%28x%20-%202%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%7B%28x%20-%202%29%7D%5E%7B2%7D%20-%201%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%202%20-%201%29%28x%20-%202%20%2B%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%28x%20-%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%7D%7Bx%28x%20-%202%29%7D%5Cright%5D)



Hence,
![\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}](https://tex.z-dn.net/?f=%5Crm%5Cimplies%20%5C%3A%5Cboxed%7B%20%5Crm%7B%20%5C%3A%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D%20%3D%202%20%5C%3A%20%7D%7D)
