Answer:
When the water is mixed with water at lower temperature the effective temperature of the system (i.e the water at lower temperature) will increase, thereby increasing it's entropy
Explanation:
The answer that "the entropy will is increases" is correct as:
The water at 90° C i.e at higher temperature is mixed with the water at 10° C i.e the water at the lower temperature.
The water at lower temperature will have molecules with lower energy while the water with higher temperature will have molecules undergoing high thermal collisions. Thereby, when the water is mixed with water at lower temperature the effective temperature of the system (i.e the water at lower temperature) will increase, thereby increasing it's entropy.
Therefore, the answer is correct with respect to the water at lower temperature.
Meanwhile, for the water at higher temperature , the temperature of the system will decrease. Thus, the entropy of the water at higher level will decrease.
Answer:
2.53×10²³ atoms
Explanation:
To solve this, convert grams to moles and moles to atoms.
To convert grams to moles, use the molar mass of C₁₂H₂₂O₁₁ (342.296 g/mol). Divide the mass by the molar mass to get moles. Moles = 0.4207
To convert moles to atoms, use Avogadro's number (6.022×10²³ atoms/mol). Multiply moles by Avogadro's number to get atoms. Atoms = 2.53×10²³
Malleability described the property of physical deformation under some compressive stress; a malleable material could, for example, be hammered into thin sheets. Malleability is generally a property of metallic elements: The atoms of elemental metals in the solid state are held together by a sea of indistinguishable, delocalized electrons. This also partially accounts for the generally high electrical and thermal conductivity of metals.
In any case, only one of the elements listed here is a metal, and that’s copper. Moreover, the other elements (hydrogen, neon, and nitrogen) are gases under standard conditions, and so their malleability wouldn’t even be a sensible consideration.
Answer:
2Al + 3H2SO4 → Al2(SO4)3 + 3H2
2Fe + 3Cl2 → 2FeCl3
Explanation:
1. (SO4) 3 you see this 3 it means that 3 must be behind H2SO4. So now it's 3H2SO4.
2. If 3 is now behind one H2, it must be behind the other.
So now it's 3H2.
3. Al2 (SO4) 3 has 2 ahead of Al which means there will be 2Al in the reactants.
1. FeCl3 has 3 ahead of Cl, and Cl2 has 2. Which means that behind FeCl3 goes 2, and behind Cl2 goes 3 so now we have equated all Cl.
2. Since it is now 2FeCl3, we know that there must be 2 in the second Fe. It's 2Fe now.