Long wavelengths and low frequencies
The volume (in liters) that the gas will occupy if the pressure is increased to 13.5 atm and the temperature is decreased to 15 °C is 15 L
From the question given above, the following data were obtained:
Initial pressure (P₁) = 8.5 atm
Initial volume (V₁) = 24 L
Initial temperature (T₁) = 25 °C = 25 + 273 = 298 K
Final pressure (P₂) = 13.5 atm
Final temperature (T₂) = 15 °C = 15 + 273 = 288 K
<h3>Final volume (V₂) =? </h3>
- The final volume of the gas can be obtained by using the combined gas equation as illustrated below:

Cross multiply
298 × 13.5 × V₂ = 204 × 288
4023 × V₂ = 58752
Divide both side by 4023

<h3>V₂ = 15 L </h3>
Therefore, the final volume of the gas is 15 L
Learn more: brainly.com/question/25547148
Answer:
B. oxidation; reduction
Explanation:
A voltaic cell is electro-chemical cell in which chemical energy is converted into electrical energy.
1. This cell utilizes chemical reaction to generate electric.\
2. there two electrode anode and cathode
3. At Anode oxidation occurs
4. At cathode reduction occurs
5. chemical is present in the cell which is electrolyte which completes the circuit of the voltaic cell.
- oxidation is the process in which there is loss of electrons
- Reduction is the process in which there is gain of electrons
___________________________________________________
Based on above discussion
At anode oxidation takes place
At cathode reduction takes place.
Hence, correct option is B. oxidation; reduction
Explanation:
Since, it is shown that the reaction has been reversed. Therefore, value of
will become
.
Hence, new 
= 
= 20
Also, the number of moles of each reactant has been halved. So,
for the reaction
will also get halved.
Therefore,
=
= 
= 4.47
As the value of
is given as +39.0 kJ. So, it means that the reaction is endothermic in nature. So, energy of reactants will be more than the products. Hence, according to Le Chatelier's principle reaction will move in the forward direction.
As a result,
will also increase with increase in temperature.
For every meter, the equivalent measurements is 1000 millimeters. Hence in the problem where the number of millimeters is given, we divide the number by 1000 to get the number of meters. The answer here is 0.01123 m.