The circulatory system picks up nitrogenous wastes from the cells and delivers them to the kidneys. The kidneys remove these wastes from the blood and concentrates them into the urine that is eliminated from the body.
Answer:
Explanation:
any type of spreading disease that kills
Answer:
3.1 x 10⁻²¹ Nm
Explanation:
When placed in an external electric filed, an electric dipole experiences a torque. and this torque is represented mathematically with the equation:
torque (τ) = dipole moment vector (P) x electric field vector (E)
τ = P. E . sin θ
where θ is the angle between the water molecule and the electric field, which in this case is 90° (because this is where the torque is maximum)
τ = 6.2x10⁻³⁰Cm . 5.0x10⁸ N/C . sin90
τ = 6.2x10⁻³⁰Cm . 5.0x10⁸ N/C . 1
solve for τ
τ = 3.1 x 10⁻²¹ Nm
the maximum possible torque on the water molecule is therefore 3.1 x 10⁻²¹ Nm
Answer:
The products are Calcium oxide and Carbon dioxide.
Explanation:
When calcium carbonate is heated, thermal decomposition occurs.
Calcium calcium → Calcium oxide + Carbon dioxide
<span>Let's </span>assume that the gas has ideal gas behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹)
and T is temperature in Kelvin.<span>
<span>
</span>P = 60 cm Hg = 79993.4 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³
n = ?
<span>
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 25 °C = 298 K
<span>
By substitution,
</span></span>79993.4 Pa<span> x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 298 K<span>
n = 4.0359 x 10</span>⁻³ mol
<span>
Hence, moles of the gas</span> = 4.0359 x 10⁻³ mol<span>
Moles = mass / molar
mass
</span>Mass of the gas = 0.529 g
<span>Molar mass of the gas</span> = mass / number of moles<span>
= </span>0.529 g / 4.0359 x 10⁻³ mol<span>
<span> = </span>131.07 g mol</span>⁻¹<span>
Hence, the molar mass of the given gas is </span>131.07 g mol⁻¹