Answer:
C. 1-ethyl, 3-methylcyclohexane
(Photo for proof at the bottom.)
Explanation:
The 1-ethyl is because you start numbering from the longest branch, towards the next closest branch. Prefix "eth-" means two, there are 2 carbons in the longest branch. 3-methyl is because the next branch is at number 3, and prefix "meth-" means 1, there is 1 carbon in that chain. "Cyclo" in cyclohexane means the skeletal model is shaped like a ring, and the "hexane" means there are 6 carbons in the ring. Prefix "hex" means 6.
Here's a photo of the unit review on Edge. Refer to the 2nd attachment for a visualization.
Please click the heart if this helped.
" There will be a net movement of oxygen from outside the cell to inside the cell " Statement is True.
Explanation:
The partial pressure for oxygen in alveoli is greater under normal circumstances, and oxygen moves neatly into the blood. In addition, the partial carbon dioxide pressure throughout the blood usually is higher, such that carbon dioxide migrate clearly into the alveoli.
The few common molecules which can traverse the cell membrane by absorption (or diffusion of a sort recognized as osmosis) are water, carbon dioxide and oxygen. Metabolism is typically oxygen-needed, which is lowest in the cell within the animal and plant, so that net oxygen flows to the cell.
NaH(s)+ H2O (l)=>NaOH(aq)+H2(g)
You want to calculate the mass of NaH, I assume. Otherwise, the question isn't clear. It simply says calculate the mass(??)
So, calculate the moles of H2 gas that satisfy the conditions of 982 ml at 28ºC and 765 torr. But you must subtract the vapor pressure of water at 28º to get the actual pressure of the H2 gas. So, the actual conditions are 982 ml (0.982 L) and 301 K and 765-28 = 737 torr.
PV = nRT
n = PV/RT = (737 torr)(0.982 L)/(62.4 L-torr/Kmol)(301 K)
n = 0.0385 moles H2
moles NaH needed = 0.0385 moles H2 x 1 mole NaH/mole H2 = 0.0385 moles NaH required
mass of NaH needed = 0.0385 moles x 24 g/mole = 0.925 g NaH
Brainliest Please :)
Answer:
1.
Explanation:
Hello,
In this case, for the given reaction we first assign the oxidation state for each species:

Whereas the half reactions are:

Next, we exchange the transferred electrons:

Afterwards, we add them to obtain:

By adding and subtracting common terms we obtain:

Finally, by removing the oxidation states we have:

Therefore, the smallest whole-number coefficient for Sn is 1.
Regards.