The amount of sample that is left after a certain period of time, given the half-life, h, can be calculated through the equation.
A(t) = A(o) (1/2)^(t/d)
where t is the certain period of time. Substituting the known values,
A(t) = (20 mg)(1/2)^(85.80/14.30)
Solving,
A(t) = 0.3125 mg
Hence, the answer is 0.3125 mg.
Answer:
The arm that was not sprayed with anything
Explanation:
The control group would be <u>the arm that was not sprayed with anything</u>.
<em>The control group during an experiment is a group that forms the baseline for comparison in other to determine the effects of a treatment. The control group does not include the variable that is being tested and as such, it provides the benchmark to measure the effects of the tested variable on the other group - the experimental group. In this case, the experimental group would be the arm that was sprayed with the repellent.</em>
The final temperature, t₂ = 30.9 °C
<h3>Further explanation</h3>
Given
24.0 kJ of heat = 24,000 J
Mass of calorimeter = 1.3 kg = 1300 g
Cs = 3.41 J/g°C
t₁= 25.5 °C
Required
The final temperature, t₂
Solution
Q = m.Cs.Δt
Q out (combustion of compound) = Q in (calorimeter)
24,000 = 1300 x 3.41 x (t₂-25.5)
t₂ = 30.9 °C
Inertia. Inertia is the natural tendency of bodies to remain in their states of either rectilinear or resting motion.
Answer:
No.
Explanation:
No, one mole of peas do not fit inside a house because one mole is equals to 6.022 × 10²³ units which is a very large value. mole only use for atoms, ions and molecules etc due to very small size but mole is not used for big sized materials such as peas and other vegetables etc. So that's why we can conclude that one mole of peas did not fit inside a house.