Answer : Capacitors
Explanation : Capacitors are normally placed on transmission or distribution lines when to reduce inductive reactance.
This is because it enhances electromechanical and voltage stability , limit voltage dips at network nodes and reduces the power loss.
So, we can say that inductive reactance normally replace by the capacitors.
This question involves the concepts of projectile motion and launch speed.
(a) The initial launch speed of the projectile is "100 m/s".
(b) The launch angle of the projectile is "53.13°".
<h3>(a) LAUNCH SPEED</h3>
A projectile motion is a motion that takes place on both x and y axes, simultaneously. In this motion the initial launch speed is given by the following formula:

where,
= initial launch speed = ?
= horizontal component of initial launch speed = 60 m/s
= vertical component of initial launch speed = 80 m/s
Therefore,

<h3>(b) LAUNCH ANGLE</h3>
Launch angle is given by th following formula:

Learn more about the projectile motion here:
brainly.com/question/11049671
Answer:
The highest electric field is experienced by a 2 C charge acted on by a 6 N electric force. Its magnitude is 3 N.
Explanation:
The formula for electric field is given as:
E = F/q
where,
E = Electric field
F = Electric Force
q = Charge Experiencing Force
Now, we apply this formula to all the cases given in question.
A) <u>A 2C charge acted on by a 4 N electric force</u>
F = 4 N
q = 2 C
Therefore,
E = 4 N/2 C = 2 N/C
B) <u>A 3 C charge acted on by a 5 N electric force</u>
F = 5 N
q = 3 C
Therefore,
E = 5 N/3 C = 1.67 N/C
C) <u>A 4 C charge acted on by a 6 N electric force</u>
F = 6 N
q = 4 C
Therefore,
E = 6 N/4 C = 1.5 N/C
D) <u>A 2 C charge acted on by a 6 N electric force</u>
F = 6 N
q = 2 C
Therefore,
E = 6 N/2 C = 3 N/C
E) <u>A 3 C charge acted on by a 3 N electric force</u>
F = 3 N
q = 3 C
Therefore,
E = 3 N/3 C = 1 N/C
F) <u>A 4 C charge acted on by a 2 N electric force</u>
F = 2 N
q = 4 C
Therefore,
E = 2 N/4 C = 0.5 N/C
The highest field is 3 N, which is found in part D.
<u>A 2 C charge acted on by a 6 N electric force</u>