<u>Answer:</u>
1) Distance traveled by bird = 403 meter
2)Average speed = 1.66 km /hour
3) Zcceleration = 2 
<u>Explanation:</u>
1) Distance traveled = Speed * Time taken = 31 * 13 = 403 meter.
2) Average speed = Total distance covered / Time taken for that distance to cover.
Total distance covered = 2+0.5+2.5 = 5 km
Time taken = 3 hours
Average speed = 5/3 = 1.66 km /hour
3) Acceleration is defined as the rate of change of velocity, so acceleration a = change in velocity/time.
Change in velocity = 14 - 6 = 8 m/s
Time = 4 seconds
So acceleration = 8 / 4 = 2 
Explanation:
This how you do it..
Calculate Watt-hours Per Day. Device Wattage (watts) x Hours Used Per Day = Watt-hours (Wh) per Day. ...
Convert Watt-Hours to Kilowatts. Device Usage (Wh) / 1000 (Wh/kWh) = Device Usage in kWh. ...
Find Your Usage Over a Month.
Compared to the pucks given, the pair of pucks will rotate at the same rate.
Answer: Option A
<u>Explanation:</u>
The law of conservation of the angular momentum expresses that when no outer torque follows upon an article, no difference in angular momentum will happen. At the point when an item is turning in a shut framework and no outside torques are applied to it, it will have no change in angular momentum.
The conservation of the angular momentum clarifies the angular quickening of an ice skater as she brings her arms and legs near the vertical rotate of revolution. In the event, that the net torque is zero, at that point angular momentum is steady or saved.
By twice the mass yet keeping the speeds unaltered, also twice the angular momentum's to the two-puck framework. Be that as it may, we likewise double the moment of inertia. Since
, the turning rate of the two-puck framework must stay unaltered.
Work = Force times Distance
W = Fd
Given W = 750J, F = 125N;
750 = 125d
Solving for d:
d = 750/125
d = 6
The box moved a distance of 6 meters.
Okay, 90% of this is nonsense besides the numbers maybe.