The kinetic energy of the child at the bottom of the incline is 106.62 J.
The given parameters:
- <em>Mass of the child, m = 16 kg</em>
- <em>Length of the incline, L = 2 m</em>
- <em>Angle of inclination, θ = 20⁰</em>
The vertical height of fall of the child from the top of the incline is calculated as;

The gravitational potential energy of the child at the top of the incline is calculated as;

Thus, based on the principle of conservation of mechanical energy, the kinetic energy of the child at the bottom of the incline is 106.62 J since no energy is lost to friction.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
Now, you always beat him. Your grandfather is likely experiencing a slight decline in perceptual speed.
<u>Explanation:</u>
The speed of perception refers to the capacity to accurately (and completely) compare words letter, digits, objects, images, etc. When testing, these objects can be displayed simultaneously or one after the other. This type of test can be included in the proficiency test.
For example, we have also seen all the puzzles that ask the reader to notice the differences between the two pictures. The time it takes to recognize these differences is a measure of the speed of perception. Likewise, in getting rid of cards at the given situation, grandfather experiences a less decline in his perceptual speed.
Answer:

Explanation:
In this case, since the charged particle moves in circular motion, the centripetal force is equivalent to the magnetic force.

Answer:
Wavelength = 0.48 m (Approx)
Explanation:
Given:
Speed of sound = 340 m/s
Frequency = 706 hz
Find:
Wavelength
Computation:
Wavelength = Speed of sound / Frequency
Wavelength = 340 / 706
Wavelength = 0.48 m (Approx)
Answer:
-15 m/s
Explanation:
The computation of the velocity of the 4.0 kg fragment is shown below:
For this question, we use the correlation of the momentum along with horizontal x axis
Given that
Weight of stationary shell = 6 kg
Other two fragments each = 1.0 kg
Angle = 60
Speed = 60 m/s
Based on the above information, the velocity = v is



= -15 m/s