<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2.
So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density.
So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave.
Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
Answer: 4.7m/s²
Explanation:
According to newton's first law,
Force = mass × acceleration
Since we are given more the one force, we will take the resultant of the two vectors.
Mass = 2.0kg
F1+F2 = (3i-8j)+(5i+3j)
Adding component wise, we have;
F1+F2 = 3i+5i-8j+3j
F1+F2 = 8i-5j
Resultant of the sum of the forces will be;
R² = (8i)²+(-5j)²
Since i.i = j.j = 1
R² = 8²+5²
R² = 64+25
R² = 89
R = √89
R = 9.4N
Our resultant force = 9.4N
Substituting in the formula
F = ma
9.4 = 2a
a = 9.4/2
a = 4.7m/s²
Therefore, magnitude of the acceleration of the particle is 4.7m/s²
Answer:
A box sits stationary on a ramp
Explanation:
Static friction is a force which keeps an object at rest as it is in the case of the box. It has to be overcome for the object to be set into motion.
Static force of friction is calculated as follows:
F= μη
F is static force of friction.
μ is the coefficient of static friction.
η is the normal force.
Explanation:
Crust...molten
a. Oceanic, iron
b. Continental, silicates
c. less
3. Mantle, Denser
a. Lithosphere
b. Asthenosphere
4. Core
a. elements, rocks
b. liquid, magnetic
(I guess the liquid should come after the is)
Couldn't answer all but wanted to help
Answer:
Explanation:
If a perfect vacuum existed in any volume, then no sound would be able to propagate through it, because a sound wave is a pressure wave, and there would be identically zero pressure. Of course, we could get into speculations about “dark energy” or “vacuum energy” supporting pressure waves, but let’s not go there.